
Software System Design
16-lectures course presented by Yegor Bugayenko
to 3rd-year BSc students of Innopolis University in 2021,
and video recorded

The entire set of slide decks is in yegor256/ssd16 GitHub repository.

Thinking Behind the Course

https://www.yegor256.com
https://innopolis.university/en/
https://www.youtube.com/playlist?list=PLaIsQH4uc08woJKRAA7mmjs9fU0jeKjjM
https://github.com/yegor256/ssd16


Page #2 of 15

The context in which the new course will be taught: There are 150 students on
the course, one instructor, three teaching assistants, 16 lectures, 16 labs, 90 minutes per
each lecture, presented on-site in the University, streamed online via Zoom, and later
published on YouTube.



Page #3 of 15

The context in which the new syllabus will be used: The audience consists of
3rd-year BSc students, who are mostly people with some practical experience of writing
code. The purpose of the Syllabus is to manage their expectations and prepare for the
examination.



Page #4 of 15

The reasons why this new course and/or this new syllabus is needed and how

it will fit into IU curriculum: As far as I understand, modern computer science
education is strong in theories but lacks the connection with practical engineering. In
other words, students have little chance of being taught by those who professionally
write code every day and solve real-life technical problems. Me teaching them software
design may be one of these opportunities: to link their theoretical learning with the
practice.



Page #5 of 15

The view(s) of learning in your course how learning happens in the course:
The course is all about problem-based learning. Many aspects of software design are
decomposed into individual problems and solutions are discussed. Also, it is suggested
to students to make their own projects and solve problems there.



Page #6 of 15

The view(s) of learning assessment in the course: The assessment is based on
software products, which students create. There are five criteria which are being
assessed: requirements, design, architecture, code, and the "spirit" of development.
Formative evaluation is only performed by TAs, three times during the course at
alpha, beta, and release milestones: students present their software products and TAs
subjectively evaluate them using the criteria define below. Summative evaluation is
done by myself at the end of the course and is based on the evaluations provided by
TAs three times during the course: my decision is also subjective, but preliminary
evaluations help students understand pros and cons of their products. There is no
significant difference between high and low stake assessments in the course, since all
five criteria are balanced: they both are middle stake assessments.



Page #7 of 15

The view(s) of progression in the course: At the end of each lecture I’m giving
them suggestion of what they may try to use in their projects. I explain them why
these "calls-to-action" may help them understand software design better. There are few
progression scenarios expected: 1) from knowing how to code they will progress to
knowing how to explain design decisions in UML, 2) from UML they will progress to
knowing how to use design patterns, 3) from design patterns they will progress to
knowing how to test their modules and automate tests, 4) from tests they will progress
tomore complex decisions about data, performance, formats, and interoperability.



Page #8 of 15

The view(s) of recycling in the course: The course is teaching incremental and
interactive programming, and it is also designed in incremental manner: every few
weeks students must present their products and collect feedback. It is expected that
their knowledge is recycled (refreshed) on each delivery cycle, since they have to review
all layers of their products. They have to go through everything they know about
software design a few times during the course.



Page #9 of 15

The view(s) of alignment in the course: Learning objectives: by the end of the
course students are able to design a software component and explain made design
decisions. Learning activities: during the course students are instructed how to design
a software and how design decisions can be explained, using different formats and
approaches, such as UML, design patterns, RUP/SAD, and so on. Learning assessment:
at the end of the course software products created by students are evaluated to check
whether design decisions are sound and well explained.



Page #10 of 15

The view(s) of course design framework you used/will use to design your course:
Integrated course design framework is used to design this course. At initial design phase
course objectives were defined. At intermediate design phase the body of the course
was created. At the final design phase the course was re-evaluated for consistency.



Page #11 of 15

The view(s) of course evaluation: I created a Telegram chat group for all students
of the course and asked them to provide feedback after some lectures. The results
collected (in form of anonymous polls) I used to correct myself and improve future
lectures. For example, I gave more examples of practical software design decisions in
response to negative comments about some of my slides. Another example, I formalized
the Syllabus of the course in response to comments about its vagueness. I also had
an additional synchronization session with TAs in response to complaints about our
disintegration.



Page #12 of 15

Potential risks in the course and the ways to address them: I was doing this
course for the first time, that’s why there were many risks. First, I expected myself
being wrong at some points given to them. Second, I anticipated their lack of interest to
certain topics inside the course. Third, I wasn’t sure that the topics I cover are aligned
with our courses. In order to mitigate these risks I organized a few workshops with
TAs, who are more knowledgeable in this aspect. They helped me understand the
context where my course is placed. Moreover, they gave me materials from previous
year course of the same title — it was helpful.



Page #13 of 15

Course Aims

Prerequisites to the course (it is expected that a student knows this):

• How to code
• How to use Git

After the course a student hopefully will know:

• How to manage software requirements
• How to develop iteratively and incrementally
• How to think with objects, not procedures
• How to use design patterns and not use anti-patterns
• How to draw and share knowledge using UML
• How to choose and use data formats, e.g. XML or JSON
• How to choose a database management server
• How to deploy software continuously
• How to build distributed software systems
• How to test software
• How to measure the quality of software design

They will also be able to:

• Document requirements in SRS and use cases
• Make key design decisions
• Explain them in UML
• Organize repository in GitHub
• Automate the build and cover it with tests



Page #14 of 15

Assessment

At the end of the course a student receives a score of up to 100 points. The points
are given after a subjective review of an open source software product created by the
student during the course (no oral presentation is needed). Even though the review is
subjective, the following balance has to be maintained (the questions provided below
stand merely as examples and do not constitute the entire scope):

• Reqirements (15%): Glossary is in place? Stakeholders and their concerns
are identified? Use cases explain functional requirements? Non-functional re-
quirements are documented? NFRs are measurable?

• Design (25%): UML diagrams, such as Class, Component, Deployment, and
Sequence, are present? Design decisions are explained? Design patterns are
used? Traceability between requirements and design elements is visible?

• Architecture (30%): The design is modular? The composition of modules
makes sense? Design elements are cohesive? Design elements are decoupled
enough? The build is automated? The delivery pipeline is automated?

• Code (15%): The code is clean enough? In-code documentation is present? Static
analyzers and style checkers are used? Unit tests are in place? Integration tests
are present? Is test coverage being measured?

• Spirit (15%): The product is somewhat popular on GitHub (or a similar plat-
form)? Issues and pull requests were used during development? Commit com-
ments are detailed enough? GitHub features are actively used, like releases,
actions, etc.?

A few versions of the product may be presented for review: Alpha, Beta, and Final.
The scores given to a student after version reviews don’t affect the overall score given
at the end of the course. However, if Alpha version is not delivered, a student gets a
penalty of 10 negative points, while a missed Beta gives 20 negative points. Thus, if a
student ignores both versions and brings a great product at the end of the course, he or
she gets 100− 30 = 70 points at most.

The score may be turned into a grade using the following formula:

• A Excellent: 90+
• B Good: 75+
• C Satisfactory: 55+
• D Poor: 0+



Page #15 of 15

Learning Material

The following books are highly recommended to read (in no particular order):

Len Bass et al., Software Architecture in
Practice

Paul Clements et al., Documenting Software
Architectures: Views and Beyond

Karl Wiegers et al., Software Requirements

Alistair Cockburn, Writing Effective Use
Cases

Steve McConnell, Software Estimation:
Demystifying the Black Art

Robert Martin, Clean Architecture: A
Craftsman’s Guide to Software Structure and
Design

Steve McConnell, Code Complete

Frederick Brooks Jr., Mythical Man-Month,
The: Essays on Software Engineering

David Thomas et al., The Pragmatic
Programmer: Your Journey To Mastery

Robert C. Martin, Clean Code: A Handbook
of Agile Software Craftsmanship

Grady Booch et al., Object-Oriented Analysis
and Design with Applications

Bjarne Stroustrup, Programming: Principles
and Practice Using C++

Brett McLaughlin et al., Head First
Object-Oriented Analysis and Design: A
Brain Friendly Guide to OOA&D

David West, Object Thinking
Eric Evans, Domain-Driven Design: Tackling
Complexity in the Heart of Software

Yegor Bugayenko, Elegant Objects
Michael Feathers, Working Effectively with
Legacy Code

Martin Fowler, Refactoring: Improving the
Design of Existing Code

Erich Gamma et al., Design Patterns:
Elements of Reusable Object-Oriented
Software

Scott Meyers, Effective C++: 55 Specific
Ways to Improve Your Programs and Designs

Elliotte Rusty Harold et al., XML in a
Nutshell, Third Edition

Michael James Fitzgerald, Learning XSLT: A
Hands-On Introduction to XSLT and XPath

Martin Fowler, UML Distilled

Anneke Kleppe et al., MDA Explained: The
Model Driven Architecture: Practice and
Promise

C.J. Date, An Introduction to Database
Systems, 8th Edition

Pramod Sadalage et al., NoSQL Distilled: A
Brief Guide to the Emerging World of
Polyglot Persistence

Jez Humble et al., Continuous Delivery:
Reliable Software Releases through Build,
Test, and Deployment Automation

Michael T. Nygard, Release It!: Design and
Deploy Production-Ready Software

Leonard Richardson et al., RESTful Web
APIs: Services for a Changing World


