
Tests

Patterns and Anti-Patterns

Yegor Bugayenko

Lecture #14 out of 16

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=KiUb6eCGHEY

2/37

Tests Patterns and Anti-Patterns @yegor256

Twenty Three Test Anti-Patterns

Mocking Frameworks

OOP + Tests

Testable Code

Books, Venues, Call-to-Action

Patterns Mocking OOP Testable B.V.C. 3/37

Tests Patterns and Anti-Patterns @yegor256

Chapter #1:

Twenty Three Test Anti-Patterns

Patterns Mocking OOP Testable B.V.C. 4/37

Tests Patterns and Anti-Patterns @yegor256

https://www.yegor256.co
m/2018/12/11/unit-testi

ng-anti-patterns.html
→

Cuckoo

Test-per-Method

Anal Probe

Conjoined Twins

Happy Path

Slow Poke

Giant

Mockery

Inspector

Generous Leftovers

Local Hero

Nitpicker

Secret Catcher

Dodger

Loudmouth

Greedy Catcher

Sequencer

Enumerator

Free Ride

Excessive Setup

Line hitter

Forty-Foot Pole Test

The Liar

https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html
https://www.yegor256.com/2018/12/11/unit-testing-anti-patterns.html

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

5/37

Tests Patterns and Anti-Patterns @yegor256

Test-per-Method

Although a one-to-one relationship between test and production classes is

a reasonable starting point, a one-to-one relationship between test and

production method is almost always a bad idea.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

6/37

Tests Patterns and Anti-Patterns @yegor256

Anal Probe

A test that has to use unhealthy ways to perform its task, such as reading

private fields using reflection.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

7/37

Tests Patterns and Anti-Patterns @yegor256

Happy Path

The tests stay on happy paths (i.e. expected results, e.g. 18 years old)

without testing for boundaries and exceptions (e.g. -2 years old)

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

8/37

Tests Patterns and Anti-Patterns @yegor256

Slow Poke

A unit test that runs incredibly slow. When developers kick it off, they

have time to go to the bathroom, grab a smoke, or worse, kick the test off

before they go home at the end of the day.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

9/37

Tests Patterns and Anti-Patterns @yegor256

Giant

A unit test that, although it is validly testing the object under test, can

span thousands of lines and contain many many test cases. This can be an

indicator that the system-under-test is a God Object.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

10/37

Tests Patterns and Anti-Patterns @yegor256

Mockery

Sometimes mocking can be good, and handy. But sometimes developers

can lose themselves in their effort to mock out what isn’t being tested. In

this case, a unit test contains so many mocks, stubs, and/or fakes that the

system under test isn’t even being tested at all, instead data returned from

mocks is what is being tested.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

11/37

Tests Patterns and Anti-Patterns @yegor256

Inspector

A unit test that violates encapsulation in an effort to achieve 100% code

coverage, but knows so much about what is going on in the object that

any attempt to refactor will break the existing test and require any change

to be reflected in the unit test.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

12/37

Tests Patterns and Anti-Patterns @yegor256

Generous Leftovers (aka Chain Gang, Wet Floor)

An instance where one unit test creates data that is persisted somewhere,

and another test reuses the data for its own devious purposes. If the

“generator” is ran afterward, or not at all, the test using that data will

outright fail.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

13/37

Tests Patterns and Anti-Patterns @yegor256

Local Hero (aka Hidden Dependency)

A test case that is dependent on something specific to the development

environment it was written on, in order to run. The result is that the test

passes on development boxes, but fails when someone attempts to run it

elsewhere.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

14/37

Tests Patterns and Anti-Patterns @yegor256

Dodger

A unit test which has lots of tests for minor (and presumably easy to test)

side effects, but never tests the core desired behavior. Sometimes you may

find this in database access related tests, where a method is called, then

the test selects from the database and runs assertions against the result.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

15/37

Tests Patterns and Anti-Patterns @yegor256

Loudmouth

A unit test (or test suite) that clutters up the console with diagnostic

messages, logging, and other miscellaneous chatter, even when tests are

passing.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

16/37

Tests Patterns and Anti-Patterns @yegor256

Sequencer

A unit test that depends on items in an unordered list appearing in the

same order during assertions.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

17/37

Tests Patterns and Anti-Patterns @yegor256

Enumerator (aka Test With No Name)

Unit tests where each test case method name is only an enumeration, e.g.

test1, test2, test3. As a result, the intention of the test case is unclear, and

the only way to be sure is to read the test case code and pray for clarity.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

18/37

Tests Patterns and Anti-Patterns @yegor256

Free Ride (aka Piggyback)

Rather than write a new test case method to test another feature or

functionality, a new assertion rides along in an existing test case.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

19/37

Tests Patterns and Anti-Patterns @yegor256

Excessive Setup (aka Mother Hen)

A test that requires a lot of work to set up in order to even begin testing.

Sometimes several hundred lines of code are used to setup the

environment for one test, with several objects involved, which can make it

difficult to really ascertain what is being tested due to the “noise” of all of

the setup.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

20/37

Tests Patterns and Anti-Patterns @yegor256

Line hitter

At first glance, the tests cover everything and code coverage tools confirm

it with 100%, but in reality the tests merely hit the code, without doing

any output analysis.

Patterns Mocking OOP Testable B.V.C.

[1 2 3 4 5 6 6 7 8 9 10 11 12 13 14 15 16 17]

21/37

Tests Patterns and Anti-Patterns @yegor256

The Liar (aka Evergreen Tests)

A test doesn’t validate any behaviour and passes in every scenario. Any

new bug introduced in the code will never be discovered by this test. It

was probably created after the implementation was finished, so the author

of this test couldn’t know whether the test actually tests something.

Patterns Mocking OOP Testable B.V.C. 22/37

Tests Patterns and Anti-Patterns @yegor256

Chapter #2:

Mocking Frameworks

Patterns Mocking OOP Testable B.V.C. 23/37

Tests Patterns and Anti-Patterns @yegor256

Mocking Frameworks are Evil

https://www.youtube.com/
watch?v=1bAixLaOCSA →

https://www.youtube.com/watch?v=1bAixLaOCSA
https://www.youtube.com/watch?v=1bAixLaOCSA
https://www.youtube.com/watch?v=1bAixLaOCSA

Patterns Mocking OOP Testable B.V.C. 24/37

Tests Patterns and Anti-Patterns @yegor256

Instead: Doubles or Fake Object
s

https://www.youtube.com/
watch?v=CCr8hRE_TUs →

https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs

Patterns Mocking OOP Testable B.V.C. 25/37

Tests Patterns and Anti-Patterns @yegor256

Chapter #3:

OOP + Tests

Patterns Mocking OOP Testable B.V.C. 26/37

Tests Patterns and Anti-Patterns @yegor256

xUnit Tests are Procedural

https://www.youtube.com/
watch?v=CCr8hRE_TUs →

https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs

Patterns Mocking OOP Testable B.V.C. 27/37

Tests Patterns and Anti-Patterns @yegor256

Instead: Single-Method Unit Tests

https://www.youtube.com/
watch?v=CCr8hRE_TUs →

https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs
https://www.youtube.com/watch?v=CCr8hRE_TUs

Patterns Mocking OOP Testable B.V.C. 28/37

Tests Patterns and Anti-Patterns @yegor256

Chapter #4:

Testable Code

Patterns Mocking OOP Testable B.V.C. 29/37

Tests Patterns and Anti-Patterns @yegor256

All Dependencies Are Injectable

Wrong

1 import java.nio.file.Files;
2 class Book {
3 String title() {
4 return Files.readAllLines(
5 Paths.get("/my-files/book.txt")
6)[0];
7 }
8 }

Right

1 import java.nio.file.Files;
2 class Book {
3 private Path file;
4 Book(Path f) {
5 this.file = f;
6 }
7 String title() {
8 return Files.readAllLines(
9 this.file
10)[0];
11 }
12 }

Patterns Mocking OOP Testable B.V.C. 30/37

Tests Patterns and Anti-Patterns @yegor256

Patterns Mocking OOP Testable B.V.C. 31/37

Tests Patterns and Anti-Patterns @yegor256

Each Interface Has a Fake Object

Interface

1 interface Book {
2 String title();
3 String author();
4 }

Fake Book

1 class FakeBook implements Book {
2 @Override
3 String title() {
4 return "Fake Title";
5 }
6 @Override
7 String author() {
8 return "Fake Author";
9 }
10 }

Patterns Mocking OOP Testable B.V.C. 32/37

Tests Patterns and Anti-Patterns @yegor256

Chapter #5:

Books, Venues, Call-to-Action

Patterns Mocking OOP Testable B.V.C. 33/37

Tests Patterns and Anti-Patterns @yegor256

Steve Freeman and Nat Pryce. Growing
Object-Oriented Software, Guided by Tests. Pearson
Education, 2009. doi:10.5555/1655852

Michael Feathers. Working Effectively With Legacy
Code. Prentice Hall, 2004. doi:10.5555/1050933

https://doi.org/10.5555/1655852
https://doi.org/10.5555/1050933

Patterns Mocking OOP Testable B.V.C. 34/37

Tests Patterns and Anti-Patterns @yegor256

Where to go:

International Symposium on Software Testing and Analysis (ISSTA)

Patterns Mocking OOP Testable B.V.C. 35/37

Tests Patterns and Anti-Patterns @yegor256

Call to Action:

Get rid of mocking framework in your code and only use fake objects.

Patterns Mocking OOP Testable B.V.C. 36/37

Tests Patterns and Anti-Patterns @yegor256

Still unresolved issues:

•How to detect test anti-patterns automatically?

•How to refactor tests automatically?

•How to write fake objects faster?

•How to educate programmers to write better tests?

Patterns Mocking OOP Testable B.V.C. 37/37

Tests Patterns and Anti-Patterns @yegor256

Bibliography

Michael Feathers. Working Effectively With Legacy Code.
Prentice Hall, 2004. doi:10.5555/1050933.

Steve Freeman and Nat Pryce. Growing Object-Oriented
Software, Guided by Tests. Pearson Education, 2009.

doi:10.5555/1655852.

https://doi.org/10.5555/1050933
https://doi.org/10.5555/1655852

	Bibliography

