
Test-Driven

Development

Yegor Bugayenko

Lecture #13 out of 16

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=8qfd93SyXpM


2/42

Test-Driven Development @yegor256

The Psychology of Testing

Test Driven Development (TDD)

Unit vs. Integration Tests

Test Coverage

Automated Performance Testing

Behavior Driven Development (BDD)

Testing vs. QA

Books, Venues, Call-to-Action



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 3/42

Test-Driven Development @yegor256

Chapter #1:

The Psychology of Testing



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 4/42

Test-Driven Development @yegor256

“One of the primary causes of poor application

testing is the fact that most programmers begin

with a false definition of the term. They might say:

’Testing is the process of demonstrating that errors

are not present.’”

— Glenford J. Myers, The Art of Software Testing



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 5/42

Test-Driven Development @yegor256

“Don’t test a program to show that it works; rather,

start with the assumption that the program contains

errors. Testing is the process of executing a program

with the intent of finding errors.”

— Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The
Art of Software Testing. Wiley, 2 edition, 2012. doi:10.5555/2161638

https://doi.org/10.5555/2161638


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 6/42

Test-Driven Development @yegor256

“If something is to be delivered, then it is

the testers who make the final decision as

to whether or not that something is

delivered into the live environment.” —Nick

Sewell, How to Test a System That Is Never Finished,

2009

“Testing is an essential activity in software

engineering. In the simplest terms, it

amounts to observing the execution of a

software system to validate whether it

behaves as intended . . . ” —Antonia Bertolino,

Software testing research: Achievements, challenges,

dreams, 2007

“Software testing is the process of

executing a software system to determine

whether it matches its specification and

executes in its intended environment.”

—James A. Whittaker,What Is Software Testing? And

Why Is It So Hard?, 2000

“We distinguish the four major testing

models... One model says we test to

demonstrate that some version of the

software satisfies its specification, two

models say we test to detect faults, and

the fourth says we test to prevent faults.

These three goals need not conflict and, in

fact, are all present in the prevention

model.” —David Gelperin, The growth of software

testing, 1988



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 7/42

Test-Driven Development @yegor256

“Software testing is not about proving conclusively

that the software is free from any defects, or even

about discovering all the defects. Such a mission for

a test team is truly impossible to achieve.”

— Rex Black. Pragmatic Software Testing: Becoming an Effective and Efficient
Test Professional. John Wiley & Sons, Inc., 2007. doi:10.5555/1215210

https://doi.org/10.5555/1215210


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 8/42

Test-Driven Development @yegor256

“The immediate goal of testing is to find errors at

any stage of software development. More the bugs

discovered at an early stage, better will be the

success rate of software testing.”

— Naresh Chauhan. Software Testing: Principles and Practices. Oxford
University Press, 2010



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 9/42

Test-Driven Development @yegor256

“Anything written by people has bugs. Not testing

something is equivalent to asserting that it’s

bug-free. Programmers can’t think of everything

especially of all the possible interactions between

features and between different pieces of software.

We try to break software because that’s the only

practical way we know of to be confident about the

product’s fitness for use.”

— Boris Beizer. Black-Box Testing: Techniques for Functional Testing of Software
and Systems. John Wiley & Sons, Inc., 1995. doi:10.5555/202699

https://doi.org/10.5555/202699


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 10/42

Test-Driven Development @yegor256

“The probability of showing that the software works

decreases as testing increases; that is, the more you

test, the likelier you are to find a bug. Therefore, if

your objective is to demonstrate a high probability

of working, that objective is best achieved by not

testing at all!”

— Boris Beizer. Software Testing Techniques. Van Nostrand Reinhold, 2 edition,
1990. doi:10.5555/79060

https://doi.org/10.5555/79060


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 11/42

Test-Driven Development @yegor256

“Program testing can be used to show the presence

of bugs, but never to show their absence!”

— Edsger W. Dijkstra. Notes on Structured Programming, 1970



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 12/42

Test-Driven Development @yegor256

Software Testing Philosophy
Bee Mobile Meetup

Moscow, Russia, 7 November 2018

Testing and Testers
TestCon

Moscow, Russia, 16 September 2020

Software Testing Pitfalls
JPoint

Moscow, Russia, 5 April 2019

Quality Assurance vs. Testing
QA Fest

Kyiv, Ukraine, 20 September 2019

https://youtu.be/y0X-WQ1bOUI
https://youtu.be/y0X-WQ1bOUI
https://www.youtube.com/watch?v=aYXuK2do6FA
https://www.youtube.com/watch?v=aYXuK2do6FA
https://www.youtube.com/watch?v=9ynzUGZjKFk
https://www.youtube.com/watch?v=9ynzUGZjKFk
https://www.youtube.com/watch?v=jZitXMQaXvE
https://www.youtube.com/watch?v=jZitXMQaXvE


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 13/42

Test-Driven Development @yegor256

Chapter #2:

Test Driven Development (TDD)



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 14/42

Test-Driven Development @yegor256

1 (test one
2 (is (= 1 (f 1))))
3 (test two
4 (is (= 1 (f 2))))
5 (test fifteen
6 (is (= 610 (f 15))))

Can you put some code here?



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 15/42

Test-Driven Development @yegor256

1 (test one
2 (is (= 1 (f 1))))
3 (test two
4 (is (= 1 (f 2))))
5 (test fifteen
6 (is (= 610 (f 15))))

1 (defun f (n)
2 (cond
3 ((= n 1) 0)
4 ((= n 2) 1)
5 (+
6 (f (- n 1))
7 (f (- n 2)))))



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 16/42

Test-Driven Development @yegor256

“Test-first fundamentalism is like abstinence-only

sex ed: An unrealistic, ineffective morality campaign

for self-loathing and shaming.”

— David H. Hansson. TDD Is Dead. Long Live Testing.
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html, 2014.
[Online; accessed 04-05-2025]

https://dhh.dk/2014/tdd-is-dead-long-live-testing.html


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 17/42

Test-Driven Development @yegor256

“It would not surprise me if, one day, TDD had the

force of law behind it.”

— Robert C. Martin. Professionalism and TDD (Reprise).
https://shorturl.at/nGS3G, 2014. [Online; accessed 04-05-2025]

https://shorturl.at/nGS3G


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 18/42

Test-Driven Development @yegor256

“I only create tests later when my users express the need for them by

reporting bugs.”

https://www.yegor256.com/2017/03/24/tdd-that-works.html

https://www.yegor256.com/2017/03/24/tdd-that-works.html


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 19/42

Test-Driven Development @yegor256

“ I don’t need tests at the beginning of the project”

https://www.yegor256.com/2017/03/24/tdd-that-works.html

https://www.yegor256.com/2017/03/24/tdd-that-works.html


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 20/42

Test-Driven Development @yegor256

Safety Net



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 21/42

Test-Driven Development @yegor256

Chapter #3:

Unit vs. Integration Tests



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 22/42

Test-Driven Development @yegor256

https://www.kenneth-tru
yers.net/2012/12/15/key-
qualities-of-a-good-uni

t-test/ →

Good Tests Are:

1) Short: less than x lines each

2) Fast: less than y milliseconds each

3) Independent: runs alone and in a suite

4) Portable: runs on your laptop and on mine

5) Careful: side effect free, doesn’t leave temp files

6) Isolated: doesn’t touch my files

https://www.kenneth-truyers.net/2012/12/15/key-qualities-of-a-good-unit-test/
https://www.kenneth-truyers.net/2012/12/15/key-qualities-of-a-good-unit-test/
https://www.kenneth-truyers.net/2012/12/15/key-qualities-of-a-good-unit-test/


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 23/42

Test-Driven Development @yegor256

1 import java.nio.file.Files;
2 class Book {
3 String title() {
4 return Files.readAllLines(
5 Paths.get("/my-data/book.txt")
6 )[0];
7 }
8 }

1 import org.junit.jupiter.api.Assertions;
2 import org.junit.jupiter.api.Test;
3 class BookTest {
4 @Test
5 void canRetrieveTitle() {
6 String t = new Book().title();
7 Assertions.assertEquals(
8 "Object Thinking", t
9 );
10 }
11 }

Is it Short, Fast, Independent, Portable, Careful, and Isolated?



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 24/42

Test-Driven Development @yegor256

1 import java.nio.file.Files;
2 class Book {
3 private Path file;
4 Book(Path f) {
5 this.file = f;
6 }
7 String title() {
8 return Files.readAllLines(
9 this.file
10 )[0];
11 }
12 }

1 import org.junit.jupiter.api.Assertions;
2 import org.junit.jupiter.api.Test;
3 class BookTest {
4 @Test
5 void canRetrieveTitle() {
6 Path f = Paths.get("/tmp/temp.txt");
7 String title = "Object Thinking";
8 Files.write(f, title.getBytes());
9 String t = new Book().title();
10 Assertions.assertEquals(title, t);
11 }
12 }

Is it Short, Fast, Independent, Portable, Careful, and Isolated?



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 25/42

Test-Driven Development @yegor256

1 import java.nio.file.Files;
2 class Book {
3 private Path file;
4 Book(Path f) {
5 this.file = f;
6 }
7 String title() {
8 return Files.readAllLines(
9 this.file
10 )[0];
11 }
12 }

1 import org.junit.jupiter.api.Assertions;
2 import org.junit.jupiter.api.Test;
3 import org.junit.jupiter.api.io.TempDir;
4 class BookTest {
5 @Test
6 void canRead(@TempDir Path dir) {
7 Path f = dir.resolve("temp.txt");
8 String title = "Object Thinking";
9 Files.write(f, title.getBytes());
10 String t = new Book().title();
11 Assertions.assertEquals(title, t);
12 }
13 }



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 26/42

Test-Driven Development @yegor256

Chapter #4:

Test Coverage



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 27/42

Test-Driven Development @yegor256

https://codecov.io/gh/yegor256/sibit/tree/master/lib

https://codecov.io/gh/yegor256/sibit/tree/master/lib


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 28/42

Test-Driven Development @yegor256

Coverage Criteria

Function Coverage

Has each function (or subroutine) in the program been called?

Statement Coverage
Has each statement in the program been executed?

Edge Coverage

Has every edge in the control-flow graph been executed?

Branch Coverage

Has each branch of each control structure been executed?

Condition Coverage

Has each Boolean sub-expression evaluated both to true and false?



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 29/42

Test-Driven Development @yegor256

Mutation Testing + Coverage

1 def f(n)
2 n * n + 1
3 end

1 f(0) == 1
2 f(1) == 2
3 f(2) == 5



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 30/42

Test-Driven Development @yegor256

Mutation Testing + Coverage

1 def f(n)
2 n * n + 1
3 end
4

5 # Mutant no. 1
6 def f(n)
7 n + n + 1
8 end
9

10 # Mutant no. 2
11 def f(n)
12 n * n - 1
13 end

1 f(0) == 1
2 f(1) == 2
3 f(2) == 5

Test coverage: 100%

Mutation coverage = 50%



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 31/42

Test-Driven Development @yegor256

Chapter #5:

Automated Performance Testing



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 32/42

Test-Driven Development @yegor256

Some Tools

WebLOAD

LoadNinja

ReadyAPI Performance

LoadView

StormForge

Keysight’s Eggplant

Apache JMeter

LoadRunner

Appvance

NeoLoad

LoadComplete

WAPT

Loadster

k6

Rational Performance Tester

Testing Anywhere

Apache Bench



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 33/42

Test-Driven Development @yegor256

Chapter #6:

Behavior Driven Development (BDD)



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 34/42

Test-Driven Development @yegor256

https://www.agilealliance.org/glossary/bdd

https://www.agilealliance.org/glossary/bdd


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 35/42

Test-Driven Development @yegor256

Chapter #7:

Testing vs. QA



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 36/42

Test-Driven Development @yegor256

Testing ̸=Quality Assurance (QA)

https://www.youtube.com/
watch?v=jZitXMQaXvE →

https://www.youtube.com/watch?v=jZitXMQaXvE
https://www.youtube.com/watch?v=jZitXMQaXvE
https://www.youtube.com/watch?v=jZitXMQaXvE


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 37/42

Test-Driven Development @yegor256

Chapter #8:

Books, Venues, Call-to-Action



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 38/42

Test-Driven Development @yegor256

Glenford J. Myers, Tom Badgett, Todd M. Thomas,
and Corey Sandler. The Art of Software Testing. Wiley,
2 edition, 2012. doi:10.5555/2161638

Kent Beck. Test Driven Development: By Example.
Addison-Wesley, 2002. doi:10.5555/579193

https://doi.org/10.5555/2161638
https://doi.org/10.5555/579193


Psychology TDD Unit Coverage Performance BDD QA B.V.C. 39/42

Test-Driven Development @yegor256

Where to publish:

International Symposium on Software Testing and Analysis (ISSTA)



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 40/42

Test-Driven Development @yegor256

Call to Action:

Integrate mutation coverage control into your build.



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 41/42

Test-Driven Development @yegor256

Still unresolved issues:

•How to test performance right?

•How to create tests automatically?

•How to motivate programmers write tests?

•How to control the quality of testing?



Psychology TDD Unit Coverage Performance BDD QA B.V.C. 42/42

Test-Driven Development @yegor256

Bibliography

Kent Beck. Test Driven Development: By Example.
Addison-Wesley, 2002. doi:10.5555/579193.

Boris Beizer. Software Testing Techniques. Van Nostrand

Reinhold, 2 edition, 1990. doi:10.5555/79060.

Boris Beizer. Black-Box Testing: Techniques for Functional

Testing of Software and Systems. John Wiley & Sons,

Inc., 1995. doi:10.5555/202699.

Rex Black. Pragmatic Software Testing: Becoming an Effective
and Efficient Test Professional. John Wiley & Sons, Inc.,

2007. doi:10.5555/1215210.

Naresh Chauhan. Software Testing: Principles and Practices.
Oxford University Press, 2010.

Edsger W. Dijkstra. Notes on Structured Programming,

1970.

David H. Hansson. TDD Is Dead. Long Live Testing.

https://dhh.dk/2014/tdd-is-dead-long-live-
testing.html, 2014. [Online; accessed 04-05-2025].

Robert C. Martin. Professionalism and TDD (Reprise).

https://shorturl.at/nGS3G, 2014. [Online;
accessed 04-05-2025].

Glenford J. Myers, Tom Badgett, Todd M. Thomas, and

Corey Sandler. The Art of Software Testing. Wiley, 2

edition, 2012. doi:10.5555/2161638.

https://doi.org/10.5555/579193
https://doi.org/10.5555/79060
https://doi.org/10.5555/202699
https://doi.org/10.5555/1215210
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://dhh.dk/2014/tdd-is-dead-long-live-testing.html
https://shorturl.at/nGS3G
https://doi.org/10.5555/2161638

	Bibliography

