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“Experienced designers evidently know something

inexperienced ones don’t. What is it? One thing

expert designers know not to do is solve every

problem from first principles. Rather, they reuse

solutions that have worked for them in the past.

When they find a good solution, they use it again

and again. Such experience is part of what makes

them experts.”

— Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994
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“When I see patterns in my programs, I consider it a

sign of trouble. The shape of a program should

reflect only the problem it needs to solve. Any other

regularity in the code is a sign, to me at least, that

I’m using abstractions that aren’t powerful

enough—often that I’m generating by hand the

expansions of some macro that I need to write.”

— Revenge of the Nerds, Paul Graham
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Some Patterns

Some Anti-Patterns

Anti-OOP Patterns

Some Refactorings

Books, Venues, Call-to-Action
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Chapter #1:

Some Patterns
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Design Patterns and Anti-Patterns, Love and Hate (2016)

36 patterns (22 anti-patterns)

https://www.yegor256.com/2016/02/03/design-patterns-and-anti-patterns.html
https://www.yegor256.com/2016/02/03/design-patterns-and-anti-patterns.html
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https://www.yegor256.co
m/2015/02/26/composable-

decorators.html →

Adapter, Facade, Proxy, Decorato
r, Bridge

1 class Database {
2 String sql(String q);
3 }
4 void echo(Book b) {
5 print(b.title());
6 print(b.author());
7 }
8 class BookInDatabase implements Book {
9 private Database d;
10 private int id;
11 String title() {
12 return d.sql("SELECT title FROM book WHERE id=%1", id);
13 }
14 }

https://www.yegor256.com/2015/02/26/composable-decorators.html
https://www.yegor256.com/2015/02/26/composable-decorators.html
https://www.yegor256.com/2015/02/26/composable-decorators.html
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https://www.yegor256.co
m/2017/08/08/raii-in-ja

va.html →

Resource Acquisition Is Initialization (RAII)
1 class File {
2 std::FILE* h;
3 public:
4 File(const char* name) {
5 h = std::fopen(name, "w+");
6 }
7 ~File() {
8 std::fclose(h);
9 }
10 }
11 void foo() {
12 f File("foo.txt");
13 // write to f
14 }

https://www.yegor256.com/2017/08/08/raii-in-java.html
https://www.yegor256.com/2017/08/08/raii-in-java.html
https://www.yegor256.com/2017/08/08/raii-in-java.html
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Chapter #2:

Some Anti-Patterns
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GOTO

1 void foo(int a) {
2 if (a % 2 == 0) {
3 printf("Even!");
4 goto exit;
5 }
6 printf("Odd!");
7 exit:
8 }
9 void foo(int a) {
10 if (a % 2 == 0) {
11 printf("Even!");
12 } else {
13 printf("Odd!");
14 }
15 }
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Magic Numbers

1 def points
2 File.readlines("/data/users.csv") # why here?
3 .map { |t| t.split(’,’, 11) } # what is 11?
4 .map { a[7].to_i } # why 7?
5 .inject(&:+)
6 end
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Magic Numbers ... Not!

1 def h2sec(h)
2 return h * 60 * 60
3 end
4

5 def h2sec(h)
6 seconds_in_minutes = 60
7 minutes_in_hours = 60
8 return h * seconds_in_minutes * minutes_in_hours
9 end
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God Class
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Spaghetti Code
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Lasagna and Ravioli
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Chapter #3:

Anti-OOP Patterns
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Anti-Patterns in OOP (2014)

Eleven: NULL, Utility Classes, Mutable Objects, Getters and Setters, Data

Transfer Object (DTO), Object-Relational Mapping (ORM), Singletons,

Controllers/Managers/Validators, Public Static Methods, Class Casting,

Traits and Mixins.

https://www.yegor256.com/2014/09/10/anti-patterns-in-oop.html
https://www.yegor256.com/2014/09/10/anti-patterns-in-oop.html
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https://www.yegor256.co
m/2014/09/16/getters-an
d-setters-are-evil.html

→

Data Transfer Object (DTO)

Getters and Setters

1 // Getters and Setters: WRONG!
2 Dog dog = new Dog();
3 dog.setWeight("23kg");
4 w = dog.getWeight();
5

6 // Smart objects: RIGHT!
7 Dog dog = new Dog("23kg");
8 int w = dog.weight();

https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html
https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html
https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html
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https://www.yegor256.co
m/2014/05/05/oop-altern
ative-to-utility-classe

s.html →

Utility Class1 public class NumberUtils {
2 public static int max(int a, int b) {
3 return a > b ? a : b;
4 }
5 }
6 public class Max implements Number {
7 private final int a;
8 private final int b;
9 public Max(int x, int y) { this.a = x; this.b = y; }
10 public int intValue() {
11 return this.a > this.b ? this.a : this.b;
12 }
13 }

https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html
https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html
https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html
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https://www.yegor256.co
m/2016/06/27/singletons-

must-die.html →

Singleton1 class Database {
2 public static Database INSTANCE = new Database();
3 private Database() { /* start */ }
4 public java.sql.Connection connect() { /* fetch */ }
5 }
6 c = Database.INSTANCE.connect();
7 class Foo {
8 private final Database d;
9 void foo() {
10 this.d.connect();
11 }
12 }

https://www.yegor256.com/2016/06/27/singletons-must-die.html
https://www.yegor256.com/2016/06/27/singletons-must-die.html
https://www.yegor256.com/2016/06/27/singletons-must-die.html
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https://www.yegor256.co
m/2014/12/01/orm-offens

ive-anti-pattern.html
→

Object-Relational Mapping (ORM)
1 // ORM: Wrong!
2 Post post = new Post();
3 post.setDate(new Date());
4 post.setTitle("How to cook an omelette");
5 session.save(post);
6

7 // Objects: RIGHT!
8 Post post = new Post();
9 post.setDate(new Date());

https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html
https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html
https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html
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Chapter #4:

Some Refactorings
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“Whenever I do refactoring, the first step is always

the same. I need to build a solid set of tests for that

section of code. The tests are essential because even

though I follow refactorings structured to avoid

most of the opportunities for introducing bugs, I’m

still human and still make mistakes. Thus I need

solid tests.”

— Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
doi:10.5555/311424

https://doi.org/10.5555/311424
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x1,2 =
−b±

√
b2 − 4ac

2a

Extract Method

1 def root(a, b, c)
2 d = Math.sqrt(b * b - 4 * a * c)
3 r1 = (-b + d) / (2 * a)
4 r2 = (-b - d) / (2 * a)
5 [r1, r2]
6 end
7

8 def root(a, b, c)
9 d = Math.sqrt(b * b - 4 * a * c)
10 [r(a, b, d, 1), r(a, b, d, -1)]
11 end
12 def r(a, b, d, m)
13 (-b + d * m) / (2 * a)
14 end
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Chapter #5:

Books, Venues, Call-to-Action
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Michael Feathers. Working Effectively With Legacy
Code. Prentice Hall, 2004. doi:10.5555/1050933

Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.
doi:10.5555/311424

https://doi.org/10.5555/1050933
https://doi.org/10.5555/311424
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Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994

Scott Meyers. Effective C++: 55 Specific Ways to
Improve Your Programs and Designs. Addison-Wesley,
3 edition, 2005
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Where to publish:

SPLASH: ACM SIGPLAN conference on Systems, Programming,

Languages, and Applications

International Conference on CodeQuality (ICCQ),

in cooperation with ACM SIGPLAN/SIGSOFT and IEEE
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Call to Action:

In your application demonstrate the usage of 4+ design patterns. Also,

perform 4+ refactorings, each one in its own pull request.
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Still unresolved issues:

•How to prove certain patterns are anti-patterns?

•How to find methods for automated refactoring?

•How to guarantee validity during refactoring?

•How to mine patterns from code?
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