
Patterns

Anti-Patterns and Refactoring

Yegor Bugayenko

Lecture #6 out of 16

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=LrTBIcFhawI

2/31

Patterns Anti-Patterns and Refactoring @yegor256

“Experienced designers evidently know something

inexperienced ones don’t. What is it? One thing

expert designers know not to do is solve every

problem from first principles. Rather, they reuse

solutions that have worked for them in the past.

When they find a good solution, they use it again

and again. Such experience is part of what makes

them experts.”

— Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1994

3/31

Patterns Anti-Patterns and Refactoring @yegor256

“When I see patterns in my programs, I consider it a

sign of trouble. The shape of a program should

reflect only the problem it needs to solve. Any other

regularity in the code is a sign, to me at least, that

I’m using abstractions that aren’t powerful

enough—often that I’m generating by hand the

expansions of some macro that I need to write.”

— Revenge of the Nerds, Paul Graham

4/31

Patterns Anti-Patterns and Refactoring @yegor256

Some Patterns

Some Anti-Patterns

Anti-OOP Patterns

Some Refactorings

Books, Venues, Call-to-Action

Patterns Anti Anti-OOP Refactorings B.V.C. 5/31

Patterns Anti-Patterns and Refactoring @yegor256

Chapter #1:

Some Patterns

Patterns Anti Anti-OOP Refactorings B.V.C. 6/31

Patterns Anti-Patterns and Refactoring @yegor256

Design Patterns and Anti-Patterns, Love and Hate (2016)

36 patterns (22 anti-patterns)

https://www.yegor256.com/2016/02/03/design-patterns-and-anti-patterns.html
https://www.yegor256.com/2016/02/03/design-patterns-and-anti-patterns.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[Decorator RAII]

7/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2015/02/26/composable-

decorators.html →

Adapter, Facade, Proxy, Decorato
r, Bridge

1 class Database {
2 String sql(String q);
3 }
4 void echo(Book b) {
5 print(b.title());
6 print(b.author());
7 }
8 class BookInDatabase implements Book {
9 private Database d;
10 private int id;
11 String title() {
12 return d.sql("SELECT title FROM book WHERE id=%1", id);
13 }
14 }

https://www.yegor256.com/2015/02/26/composable-decorators.html
https://www.yegor256.com/2015/02/26/composable-decorators.html
https://www.yegor256.com/2015/02/26/composable-decorators.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[Decorator RAII]

8/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2017/08/08/raii-in-ja

va.html →

Resource Acquisition Is Initialization (RAII)
1 class File {
2 std::FILE* h;
3 public:
4 File(const char* name) {
5 h = std::fopen(name, "w+");
6 }
7 ~File() {
8 std::fclose(h);
9 }
10 }
11 void foo() {
12 f File("foo.txt");
13 // write to f
14 }

https://www.yegor256.com/2017/08/08/raii-in-java.html
https://www.yegor256.com/2017/08/08/raii-in-java.html
https://www.yegor256.com/2017/08/08/raii-in-java.html

Patterns Anti Anti-OOP Refactorings B.V.C. 9/31

Patterns Anti-Patterns and Refactoring @yegor256

Chapter #2:

Some Anti-Patterns

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

10/31

Patterns Anti-Patterns and Refactoring @yegor256

GOTO

1 void foo(int a) {
2 if (a % 2 == 0) {
3 printf("Even!");
4 goto exit;
5 }
6 printf("Odd!");
7 exit:
8 }
9 void foo(int a) {
10 if (a % 2 == 0) {
11 printf("Even!");
12 } else {
13 printf("Odd!");
14 }
15 }

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

11/31

Patterns Anti-Patterns and Refactoring @yegor256

Magic Numbers

1 def points
2 File.readlines("/data/users.csv") # why here?
3 .map { |t| t.split(’,’, 11) } # what is 11?
4 .map { a[7].to_i } # why 7?
5 .inject(&:+)
6 end

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

12/31

Patterns Anti-Patterns and Refactoring @yegor256

Magic Numbers ... Not!

1 def h2sec(h)
2 return h * 60 * 60
3 end
4

5 def h2sec(h)
6 seconds_in_minutes = 60
7 minutes_in_hours = 60
8 return h * seconds_in_minutes * minutes_in_hours
9 end

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

13/31

Patterns Anti-Patterns and Refactoring @yegor256

God Class

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

14/31

Patterns Anti-Patterns and Refactoring @yegor256

Spaghetti Code

Patterns Anti Anti-OOP Refactorings B.V.C.

[GOTO Numbers God Spaghetti Lasagna]

15/31

Patterns Anti-Patterns and Refactoring @yegor256

Lasagna and Ravioli

Patterns Anti Anti-OOP Refactorings B.V.C. 16/31

Patterns Anti-Patterns and Refactoring @yegor256

Chapter #3:

Anti-OOP Patterns

Patterns Anti Anti-OOP Refactorings B.V.C. 17/31

Patterns Anti-Patterns and Refactoring @yegor256

Anti-Patterns in OOP (2014)

Eleven: NULL, Utility Classes, Mutable Objects, Getters and Setters, Data

Transfer Object (DTO), Object-Relational Mapping (ORM), Singletons,

Controllers/Managers/Validators, Public Static Methods, Class Casting,

Traits and Mixins.

https://www.yegor256.com/2014/09/10/anti-patterns-in-oop.html
https://www.yegor256.com/2014/09/10/anti-patterns-in-oop.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[DTO Utility Singleton ORM]

18/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2014/09/16/getters-an
d-setters-are-evil.html

→

Data Transfer Object (DTO)

Getters and Setters

1 // Getters and Setters: WRONG!
2 Dog dog = new Dog();
3 dog.setWeight("23kg");
4 w = dog.getWeight();
5

6 // Smart objects: RIGHT!
7 Dog dog = new Dog("23kg");
8 int w = dog.weight();

https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html
https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html
https://www.yegor256.com/2014/09/16/getters-and-setters-are-evil.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[DTO Utility Singleton ORM]

19/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2014/05/05/oop-altern
ative-to-utility-classe

s.html →

Utility Class1 public class NumberUtils {
2 public static int max(int a, int b) {
3 return a > b ? a : b;
4 }
5 }
6 public class Max implements Number {
7 private final int a;
8 private final int b;
9 public Max(int x, int y) { this.a = x; this.b = y; }
10 public int intValue() {
11 return this.a > this.b ? this.a : this.b;
12 }
13 }

https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html
https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html
https://www.yegor256.com/2014/05/05/oop-alternative-to-utility-classes.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[DTO Utility Singleton ORM]

20/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2016/06/27/singletons-

must-die.html →

Singleton1 class Database {
2 public static Database INSTANCE = new Database();
3 private Database() { /* start */ }
4 public java.sql.Connection connect() { /* fetch */ }
5 }
6 c = Database.INSTANCE.connect();
7 class Foo {
8 private final Database d;
9 void foo() {
10 this.d.connect();
11 }
12 }

https://www.yegor256.com/2016/06/27/singletons-must-die.html
https://www.yegor256.com/2016/06/27/singletons-must-die.html
https://www.yegor256.com/2016/06/27/singletons-must-die.html

Patterns Anti Anti-OOP Refactorings B.V.C.

[DTO Utility Singleton ORM]

21/31

Patterns Anti-Patterns and Refactoring @yegor256

https://www.yegor256.co
m/2014/12/01/orm-offens

ive-anti-pattern.html
→

Object-Relational Mapping (ORM)
1 // ORM: Wrong!
2 Post post = new Post();
3 post.setDate(new Date());
4 post.setTitle("How to cook an omelette");
5 session.save(post);
6

7 // Objects: RIGHT!
8 Post post = new Post();
9 post.setDate(new Date());

https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html
https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html
https://www.yegor256.com/2014/12/01/orm-offensive-anti-pattern.html

Patterns Anti Anti-OOP Refactorings B.V.C. 22/31

Patterns Anti-Patterns and Refactoring @yegor256

Chapter #4:

Some Refactorings

Patterns Anti Anti-OOP Refactorings B.V.C. 23/31

Patterns Anti-Patterns and Refactoring @yegor256

“Whenever I do refactoring, the first step is always

the same. I need to build a solid set of tests for that

section of code. The tests are essential because even

though I follow refactorings structured to avoid

most of the opportunities for introducing bugs, I’m

still human and still make mistakes. Thus I need

solid tests.”

— Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley, 1999.
doi:10.5555/311424

https://doi.org/10.5555/311424

Patterns Anti Anti-OOP Refactorings B.V.C. 24/31

Patterns Anti-Patterns and Refactoring @yegor256

x1,2 =
−b±

√
b2 − 4ac

2a

Extract Method

1 def root(a, b, c)
2 d = Math.sqrt(b * b - 4 * a * c)
3 r1 = (-b + d) / (2 * a)
4 r2 = (-b - d) / (2 * a)
5 [r1, r2]
6 end
7

8 def root(a, b, c)
9 d = Math.sqrt(b * b - 4 * a * c)
10 [r(a, b, d, 1), r(a, b, d, -1)]
11 end
12 def r(a, b, d, m)
13 (-b + d * m) / (2 * a)
14 end

Patterns Anti Anti-OOP Refactorings B.V.C. 25/31

Patterns Anti-Patterns and Refactoring @yegor256

Chapter #5:

Books, Venues, Call-to-Action

Patterns Anti Anti-OOP Refactorings B.V.C. 26/31

Patterns Anti-Patterns and Refactoring @yegor256

Michael Feathers. Working Effectively With Legacy
Code. Prentice Hall, 2004. doi:10.5555/1050933

Martin Fowler, Kent Beck, John Brant, William
Opdyke, and Don Roberts. Refactoring: Improving the
Design of Existing Code. Addison-Wesley, 1999.
doi:10.5555/311424

https://doi.org/10.5555/1050933
https://doi.org/10.5555/311424

Patterns Anti Anti-OOP Refactorings B.V.C. 27/31

Patterns Anti-Patterns and Refactoring @yegor256

Erich Gamma, Richard Helm, Ralph Johnson, and
John Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley, 1994

Scott Meyers. Effective C++: 55 Specific Ways to
Improve Your Programs and Designs. Addison-Wesley,
3 edition, 2005

Patterns Anti Anti-OOP Refactorings B.V.C. 28/31

Patterns Anti-Patterns and Refactoring @yegor256

Where to publish:

SPLASH: ACM SIGPLAN conference on Systems, Programming,

Languages, and Applications

International Conference on CodeQuality (ICCQ),

in cooperation with ACM SIGPLAN/SIGSOFT and IEEE

Patterns Anti Anti-OOP Refactorings B.V.C. 29/31

Patterns Anti-Patterns and Refactoring @yegor256

Call to Action:

In your application demonstrate the usage of 4+ design patterns. Also,

perform 4+ refactorings, each one in its own pull request.

Patterns Anti Anti-OOP Refactorings B.V.C. 30/31

Patterns Anti-Patterns and Refactoring @yegor256

Still unresolved issues:

•How to prove certain patterns are anti-patterns?

•How to find methods for automated refactoring?

•How to guarantee validity during refactoring?

•How to mine patterns from code?

Patterns Anti Anti-OOP Refactorings B.V.C. 31/31

Patterns Anti-Patterns and Refactoring @yegor256

Bibliography

Michael Feathers. Working Effectively With Legacy Code.
Prentice Hall, 2004. doi:10.5555/1050933.

Martin Fowler, Kent Beck, John Brant, William Opdyke, and

Don Roberts. Refactoring: Improving the Design of
Existing Code. Addison-Wesley, 1999.

doi:10.5555/311424.

Erich Gamma, Richard Helm, Ralph Johnson, and John

Vlissides. Design Patterns: Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1994.

Scott Meyers. Effective C++: 55 Specific Ways to Improve Your
Programs and Designs. Addison-Wesley, 3 edition, 2005.

https://doi.org/10.5555/1050933
https://doi.org/10.5555/311424

	Bibliography

