
Static Analysis

Yegor Bugayenko

Lecture #23 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=QK2XQvYoEpQ

2/23

Static Analysis @yegor256

Steven Johnson

“Lint is a command which examines C source

programs, detecting a number of bugs and

obscurities. It enforces the type rules of C more

strictly than the C compilers. It may also be used to

enforce a number of portability restrictions involved

in moving programs between different machines

and/or operating systems. Another option detects a

number of wasteful, or error prone, constructions

which nevertheless are, strictly speaking, legal.”

— Stephen C. Johnson. Lint, a C Program Checker. Bell Labs, 1977

3/23

Static Analysis @yegor256

“This is dryer lint, which is scraped

out of a clothes dryer filter after it

has dried a few loads. The idea of

the Lint tool is to get this sort of

stuff out of your code by being very

pedantic about warnings and

advice on possible bad code

constructions.” —Quora

https://www.quora.com/In-programming-where-does-the-term-lint-come-from

4/23

Static Analysis @yegor256

Some Types of Bugs to Be Found by Static Analysis

Unreachable Code:

1 int a = 10;
2 if (a > 20) {
3 a = a + 1;
4 }

Uninitialized Variable:

1 int x;
2 int y = x + 42;
3 print(y);

Division by Zero:

1 int f(int x) {
2 return 42 / x;
3 }

Integer Overflow:

1 var x: u8 = 142;
2 x = x * 2;

Endless Loop:

1 int x = 5;
2 int y = 0;
3 while (x > 0) {
4 y = y + x;
5 }

Buffer Overflow:

1 #include <stdio.h>
2 char buf[16];
3 fgets(buf, 1024, stdin);

5/23

Static Analysis @yegor256

Inter-procedural Analysis

Unused Global Var:

1 int x;
2 int foo() {
3 return 42;
4 }
5 int bar(int x) {
6 return x + 1;
7 }

Endless Recursion:

1 int foo(int n) {
2 return bar(n - 1);
3 }
4 int bar(int n) {
5 return foo(n + 1);
6 }

Pointer Dereferencing:

1 int foo() {
2 return *bar();
3 }
4 int* bar() {
5 return 0;
6 }

6/23

Static Analysis @yegor256

Violations, Smells, Bugs

Style Violation:

1 int f
2 (int x)
3 {
4 return 42/x;
5 }

Code Smell:

1 int f(int x) {
2 return 42.0 / x;
3 }

Bug:

1 int f(int x) {
2 return 42 / x;
3 }

Line 2: Indentation
Line 3: Curled bracket
Line 4: Indentation

Line 2: Implicit type
cast from float to int

Line 2: Division by zero

7/23

Static Analysis @yegor256

Brian Chess

“Beware of any tool that says something like, ‘zero

defects found, your program is, rather, now secure.’

The appropriate output is, ‘sorry, couldn’t find any

more bugs.’”

— Brian Chess and Gary McGraw. Static Analysis for Security. IEEE Security &
Privacy, 2(6):76–79, 2004. doi:10.1109/msp.2004.111

https://doi.org/10.1109/msp.2004.111

8/23

Static Analysis @yegor256

False Negative vs. False Positive

1 int f(int x) {
2 return 42 / x;
3 }

True Positive (TP):
“Division by zero”

False Positive (FP):
“Integer overflow”

True Negative (TN):
“No buffer overflow”

False Negative (FN):
“No errors at all”

9/23

Static Analysis @yegor256

Sunghun Kim

“About 90% of warnings remain in the program or

are removed during non-fix changes — likely false

positive warnings.”

— Sunghun Kim and Michael D. Ernst. Which Warnings Should I Fix First? In
Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference, pages 45–54, 2007. doi:10.1145/1287624.1287633

https://doi.org/10.1145/1287624.1287633

10/23

Static Analysis @yegor256

Brittany Johnson

“Our results confirmed that false positives and

developer overload play a part in developers’

dissatisfaction with current static analysis tools.”

— Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
Why Don’t Software Developers Use Static Analysis Tools to Find Bugs? In
Proceedings of the 35th International Conference on Software Engineering (ICSE),
pages 672–681. IEEE, 2013. doi:10.1109/ICSE.2013.6606613

https://doi.org/10.1109/ICSE.2013.6606613

11/23

Static Analysis @yegor256

Benjamin Livshits

“We are not aware of a single realistic

whole-program analysis tool that does not purposely

make unsound choices... Soundness is not even

necessary for most modern analysis applications,

however, as many clients can tolerate unsoundness.”

— Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, Ondřej Lhoták,
J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P. Khedker,
Anders Møller, and Dimitrios Vardoulakis. In Defense of Soundiness: A
Manifesto. Communications of the ACM, 58(2):44–46, 2015. doi:10.1145/2644805

https://doi.org/10.1145/2644805

12/23

Static Analysis @yegor256

Steven Arzt

“In our experiments on DroidBench examples,

TASMAN reduces the number of false positives by

about 80% without pruning any true positives.”

— Steven Arzt, Siegfried Rasthofer, Robert Hahn, and Eric Bodden. Using
Targeted Symbolic Execution for Reducing False-Positives in Dataflow Analysis.
In Proceedings of the 4th International Workshop on State of the Art in Program
Analysis, pages 1–6, 2015. doi:10.1145/2771284.2771285

https://doi.org/10.1145/2771284.2771285

13/23

Static Analysis @yegor256

Nachiappan Nagappan

“Our results show that the static analysis defect

density is correlated at statistically significant levels

to the pre-release defect density determined by

various testing activities. Further, the static analysis

defect density can be used to predict the pre-release

defect density with a high degree of sensitivity.”

— Nachiappan Nagappan and Thomas Ball. Static Analysis Tools as Early
Indicators of Pre-Release Defect Density. In Proceedings of the 27th International
Conference on Software Engineering, pages 580–586, 2005.
doi:10.1145/1062455.1062558

https://doi.org/10.1145/1062455.1062558

14/23

Static Analysis @yegor256

My Favorite Static Analyzers

• Java: SpotBugs, Checkstyle, PMD, andQulice for Java

• C++: Clang-Tidy

• Rust: clippy

There are many more of them:

https://github.com/analysis-tools-dev/static-analysis

https://spotbugs.github.io/
https://checkstyle.sourceforge.io/
https://pmd.github.io/
https://www.qulice.com
https://clang.llvm.org/extra/clang-tidy/
https://github.com/rust-lang/rust-clippy
https://github.com/analysis-tools-dev/static-analysis

15/23

Static Analysis @yegor256

Some Static Analysis Mechanisms

•Data Flow Analysis

• Symbolic Execution

•Model Checking

• Taint Analysis

You may want to watch my “Practical Program Analysis” course.

https://github.com/yegor256/ppa

16/23

Static Analysis @yegor256

For some tools, you have to pay:

• Coverity by Synopsys (US)

• Klockwork by Perforce (US)

• Fortify by Micro Focus (UK)

• Checkmarx (US)

• Veracode (US)
• Snyk (US)

• PVS-Studio (Russia)

Usually, up to $3,000 per developer per year.

https://scan.coverity.com/
https://www.perforce.com/
https://www.microfocus.com/
https://checkmarx.com/
https://www.veracode.com/
https://snyk.io/
https://pvs-studio.com/en/pvs-studio/

17/23

Static Analysis @yegor256

Why do JavaScript developers use linters?

• Prevent Errors
•Augment Test Suites

•Avoid Ambiguous and Complex Code

•Maintain Code Consistency

• Faster Code Review
• Spare Developers’ Feelings
• Save Discussion Time

• Learn About JavaScript

Source: Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. Why and How JavaScript Developers

Use Linters. In Proceedings of the 32nd International Conference on Automated Software Engineering (ASE), pages
578–589. IEEE, 2017. doi:10.1109/ase.2017.8115668

https://doi.org/10.1109/ase.2017.8115668

18/23

Static Analysis @yegor256

Kristín Fjóla Tómasdóttir

“Every single interview participant mentioned that

one of the reasons why they use a linter is to

maintain code consistency.”

— Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The
Adoption of JavaScript Linters in Practice: A Case Study on ESLint. IEEE
Transactions on Software Engineering, 46(8):863–891, 2018.
doi:10.1109/tse.2018.2871058

https://doi.org/10.1109/tse.2018.2871058

19/23

Static Analysis @yegor256

Source: Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie Van Deursen. The Adoption of JavaScript Linters in

Practice: A Case Study on ESLint. IEEE Transactions on Software Engineering, 46(8):863–891, 2018.
doi:10.1109/tse.2018.2871058

https://doi.org/10.1109/tse.2018.2871058

20/23

Static Analysis @yegor256

SARIF

“This document defines a standard

format for the output of static

analysis tools.”

Source: OASIS. Static Analysis Results Interchange

Format (SARIF) Version 2.1.0 Plus Errata 01.

https://docs.oasis-open.org/sarif/sarif/v2.
1.0/sarif-v2.1.0.html, 2023. [Online; accessed
08-03-2024]

https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

21/23

Static Analysis @yegor256

Florian Obermüller

“We introduce the concept of code perfumes as the

counterpart to code smells, indicating the correct

application of programming practices considered to

be good. Using a catalogue of 25 code perfumes for,

we empirically demonstrate that these represent

frequent practices in, and we find that better

programs indeed contain more code perfumes.”

— Florian Obermüller, Lena Bloch, Luisa Greifenstein, Ute Heuer, and Gordon
Fraser. Code Perfumes: Reporting Good Code to Encourage Learners. In
Proceedings of the 16th Workshop in Primary and Secondary Computing
Education, pages 1–10, 2021. doi:10.1145/3481312.3481346

https://doi.org/10.1145/3481312.3481346

22/23

Static Analysis @yegor256

References
Steven Arzt, Siegfried Rasthofer, Robert Hahn, and

Eric Bodden. Using Targeted Symbolic Execution

for Reducing False-Positives in Dataflow Analysis.

In Proceedings of the 4th International Workshop
on State of the Art in Program Analysis, pages 1–6,
2015. doi:10.1145/2771284.2771285.

Brian Chess and Gary McGraw. Static Analysis for

Security. IEEE Security & Privacy, 2(6):76–79, 2004.
doi:10.1109/msp.2004.111.

Brittany Johnson, Yoonki Song, Emerson

Murphy-Hill, and Robert Bowdidge. Why Don’t

Software Developers Use Static Analysis Tools to

Find Bugs? In Proceedings of the 35th International
Conference on Software Engineering (ICSE), pages
672–681. IEEE, 2013.

doi:10.1109/ICSE.2013.6606613.

Stephen C. Johnson. Lint, a C Program Checker. Bell
Labs, 1977.

Sunghun Kim and Michael D. Ernst. Which

Warnings Should I Fix First? In Proceedings of the
the 6th Joint Meeting of the European Software
Engineering Conference, pages 45–54, 2007.
doi:10.1145/1287624.1287633.

Benjamin Livshits, Manu Sridharan, Yannis

Smaragdakis, Ondřej Lhoták, J. Nelson Amaral,

Bor-Yuh Evan Chang, Samuel Z. Guyer, Uday P.

Khedker, Anders Møller, and Dimitrios

Vardoulakis. In Defense of Soundiness: A

Manifesto. Communications of the ACM, 58(2):

44–46, 2015. doi:10.1145/2644805.

Nachiappan Nagappan and Thomas Ball. Static

Analysis Tools as Early Indicators of Pre-Release

Defect Density. In Proceedings of the 27th
International Conference on Software Engineering,
pages 580–586, 2005.

doi:10.1145/1062455.1062558.

OASIS. Static Analysis Results Interchange Format

(SARIF) Version 2.1.0 Plus Errata 01.

https://docs.oasis-open.org/sarif/sarif/
v2.1.0/sarif-v2.1.0.html, 2023. [Online;
accessed 08-03-2024].

https://doi.org/10.1145/2771284.2771285
https://doi.org/10.1109/msp.2004.111
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/1287624.1287633
https://doi.org/10.1145/2644805
https://doi.org/10.1145/1062455.1062558
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html
https://docs.oasis-open.org/sarif/sarif/v2.1.0/sarif-v2.1.0.html

23/23

Static Analysis @yegor256

Florian Obermüller, Lena Bloch, Luisa Greifenstein,

Ute Heuer, and Gordon Fraser. Code Perfumes:

Reporting Good Code to Encourage Learners. In

Proceedings of the 16th Workshop in Primary and
Secondary Computing Education, pages 1–10, 2021.
doi:10.1145/3481312.3481346.

Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie

Van Deursen. Why and How JavaScript

Developers Use Linters. In Proceedings of the 32nd

International Conference on Automated Software
Engineering (ASE), pages 578–589. IEEE, 2017.
doi:10.1109/ase.2017.8115668.

Kristín Fjóla Tómasdóttir, Mauricio Aniche, and Arie

Van Deursen. The Adoption of JavaScript Linters

in Practice: A Case Study on ESLint. IEEE
Transactions on Software Engineering, 46(8):
863–891, 2018. doi:10.1109/tse.2018.2871058.

https://doi.org/10.1145/3481312.3481346
https://doi.org/10.1109/ase.2017.8115668
https://doi.org/10.1109/tse.2018.2871058

