
Code Style

Yegor Bugayenko

Lecture #22 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=hPZGoEAXwY0

2/29

Code Style @yegor256

Which One Looks Better for You?

C:

1 int f(int n)
2 {
3 if (n == 1 || n < 2)
4 return 1;
5 int r = f (n-1);
6 int r2 = f(n - 2);
7 return r +r2;
8 }

Java:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Ruby:

1 def fibonacci(int n)
2 return 1 if n <= 2
3 fibonacci(n - 1)
4 + fibonacci(n - 2)
5 end

3/29

Code Style @yegor256

Brian Kernighan

“The harder it is for people to grasp the intent of any

given section, the longer it will be before the

program becomes operational. Trying to outsmart a

compiler defeats much of the purpose of using one.

Write clearly — don’t sacrifice clarity for ‘efficiency.’”

— Brian W. Kernighan and Phillip James Plauger. The Elements of Programming
Style. McGraw-Hill, Inc, 1974. doi:10.5555/601121

https://doi.org/10.5555/601121

4/29

Code Style @yegor256

David Marca

“The effective utilization of extra spaces, blank lines,

or special characters can illuminate the logical

structure of a program. So we should not be afraid

to: indent, indent consistently (3 is a readable

minimum), start each statement on a new line, put

only one word on a line, use extra pages to visually

collect code, put blank lines between code, align

keywords, separate code from comments with white

space.”

— David Marca. Some Pascal Style Guidelines. ACM SIGPLAN Notices, 16(4):
70–80, 1981. doi:10.1145/988131.988140

https://doi.org/10.1145/988131.988140

5/29

Code Style @yegor256

“The best style enforcer is the

computer ... but only if we can

easily cope with its ever-present

restrictions.”

Source: David Marca. Some Pascal Style Guidelines.

ACM SIGPLAN Notices, 16(4):70–80, 1981.
doi:10.1145/988131.988140

https://doi.org/10.1145/988131.988140

6/29

Code Style @yegor256

Michael J. Rees

“STYLE was designed to input the source of a

syntactically correct Pascal program, make simple

measurements on a one-pass line-by-line basis, and

yield a style mark out of 100%.”

— Michael J. Rees. Automatic Assessment Aids for Pascal Programs. ACM
SIGPLAN Notices, 17(10):33–42, 1982. doi:10.1145/948086.948088

https://doi.org/10.1145/948086.948088

7/29

Code Style @yegor256

Rees Score, for Pascal

Source: Michael J. Rees. Automatic Assessment Aids

for Pascal Programs. ACM SIGPLAN Notices, 17(10):
33–42, 1982. doi:10.1145/948086.948088

https://doi.org/10.1145/948086.948088

8/29

Code Style @yegor256

“The ‘elegance’ or ‘style’ of a program is sometimes

considered a nebulous attribute that is somehow

unquantifiable; a programmer has an instinctive feel

for a ‘good’ or a ‘bad’ program in much the same

way as an artist distinguishes good and bad

paintings.”

— R. E. Berry and B. A. E. Meekings. A Style Analysis of C Programs.
Communications of the ACM, 28(1):80–88, 1985. doi:10.1145/2465.2469

https://doi.org/10.1145/2465.2469

9/29

Code Style @yegor256

Berry-Meekings Score, for C Programs

Source: R. E. Berry and B. A. E. Meekings. A Style

Analysis of C Programs. Communications of the ACM,

28(1):80–88, 1985. doi:10.1145/2465.2469

“An individual score for each metric

is determined by reference to the

value in this table for

1. the point L, below which no

score is obtained;

2. the point S, the start of the
“ideal” range for the metric;

3. the point F , the end of the ideal

range;

4. the point H , above which no

score is obtained.”

https://doi.org/10.1145/2465.2469

10/29

Code Style @yegor256

Warren Harrison

“To determine the relationship (if any) between the

style metric and error proneness of each module, we

performed a simple correlation analysis. The results

were discouraging in the sense that a correlation of

only -0.052 existed between the observed error

frequency and the style metric, suggesting that the

style metric bore little relationship to the error

frequency encountered in our data.”

— Warren Harrison and Curtis R. Cook. A Note on the Berry-Meekings Style
Metric. Communications of the ACM, 29(2):123–125, 1986. doi:10.1145/5657.5660

https://doi.org/10.1145/5657.5660

11/29

Code Style @yegor256

My Favorite Style Checkers

• ESLint (2013) for JavaScript

• Clang-Tidy (2007?) for C++

• Pylint (2006) for Python

• Rubocop (2012) for Ruby

• PHP_CodeSniffer (2011) for PHP

• rustfmt (2015) for Rust

•Qulice by Bugayenko [2014] for Java: Checkstyle (2001) + PMD (2022)

https://eslint.org/
https://clang.llvm.org/extra/clang-tidy/
https://github.com/pylint-dev/pylint
https://github.com/rubocop/rubocop
https://github.com/squizlabs/PHP_CodeSniffer
https://github.com/rust-lang/rustfmt
https://www.qulice.com
https://checkstyle.sourceforge.io/
https://pmd.github.io/

12/29

Code Style @yegor256

How Many Rules in Style Checkers?

• 690+ in Clang-Tidy (C++)

• 550+ in Rubocop (Ruby)

• 400+ in PMD (Java)

• 130+ in Checkstyle (Java)

• 120+ in Pylint (Python)

Some/most of the rules no only check style, but also find bugs.

13/29

Code Style @yegor256

Some Exotic Style Checkers

• Shellcheck for Bash

•markdownlint for Markdown

• Checkmake for Makefile

• xcop for XML

https://github.com/koalaman/shellcheck
https://github.com/markdownlint/markdownlint
https://github.com/mrtazz/checkmake
https://github.com/yegor256/xcop

14/29

Code Style @yegor256

Christian Collberg

“Code obfuscation means one user runs an

application through an obfuscator, a program that

transforms the application into one that is

functionally identical to the original but which is

much more difficult for another user to understand.”

— Christian Collberg, Clark Thomborson, and Douglas Low. A Taxonomy of
Obfuscating Transformations, 1997

15/29

Code Style @yegor256

Raymond Buse

“Formally, we can characterize software readability

as a mapping from a code sample to a finite score

domain. We presented human annotators with a

sequence of short code selections, called snippets.

The annotators were asked to individually score

each snippet based on their personal estimation of

readability. Our metric for readability is derived

(using ML) from these judgments.”

— Raymond P. L. Buse and Westley R. Weimer. Learning a Metric for Code
Readability. IEEE Transactions on Software Engineering, 36(4):546–558, 2009.
doi:10.1109/TSE.2009.70

https://doi.org/10.1109/TSE.2009.70

16/29

Code Style @yegor256

“We find, for example, that factors

like ’average line length’ and

’average number of identifiers per

line’ are very important to

readability. Conversely, ’average

identifier length’ is not, in itself, a

very predictive factor,”

Source: Raymond P. L. Buse and Westley R. Weimer.

Learning a Metric for Code Readability. IEEE
Transactions on Software Engineering, 36(4):546–558,
2009. doi:10.1109/TSE.2009.70

https://doi.org/10.1109/TSE.2009.70

17/29

Code Style @yegor256

Cathal Boogerd

“First, there are 9 out of 72 rules for which violations

were observed that perform significantly better than

a random predictor at locating fault-related lines.

Second, we observed a negative correlation between

MISRA rule violations and observed faults. In

addition, 29 out of 72 rules had a zero true positive

rate. This makes it possible that adherence to the

MISRA standard as a whole would have made the

software less reliable.”

— Cathal Boogerd and Leon Moonen. Assessing the Value of Coding Standards:
An Empirical Study. In Proceedings of the International Conference on Software
Maintenance, pages 277–286. IEEE, 2008. doi:10.1109/icsm.2008.4658076

https://doi.org/10.1109/icsm.2008.4658076

18/29

Code Style @yegor256

Henry Ledgard

“An individual’s body language helps clarify the

spoken word. In a similar sense, the programmer

relies on white space—what is not said directly—in

the code to communicate logic, intent, and

understanding.”

— Robert Green and Henry Ledgard. Coding Guidelines: Finding the Art in the
Science. Communications of the ACM, 54(12):57–63, 2011.
doi:10.1145/2043174.2043191

https://doi.org/10.1145/2043174.2043191

19/29

Code Style @yegor256

Source: Robert Green and Henry Ledgard. Coding Guidelines: Finding the Art in the Science. Communications
of the ACM, 54(12):57–63, 2011. doi:10.1145/2043174.2043191

https://doi.org/10.1145/2043174.2043191

20/29

Code Style @yegor256

Peter C. Rigby

“We list the reasons why our interviewees rejected a

patch or required further modification before

accepting it: Poor quality, Violation of style,

Gratuitous changes mixed with ‘true’ changes, Code

does not do or fix what it claims to or introduces

new bugs, Fix conflicts with existing code, Use of

incorrect API or library.”

— Peter C. Rigby and Margaret-Anne Storey. Understanding Broadcast Based
Peer Review on Open Source Software Projects. In Proceedings of the 33rd
International Conference on Software Engineering, pages 541–550, 2011.
doi:10.1145/1985793.1985867

https://doi.org/10.1145/1985793.1985867

21/29

Code Style @yegor256

Vipin Balachandran

“Through a user study, we show that integrating

static analysis tools (Checkstyle, PMD, and

FindBugs) with code review process can improve the

quality of code review. The developer feedback for a

subset of comments from automatic reviews shows

that the developers agree to fix 93% of all the

automatically generated comments.”

— Vipin Balachandran. Reducing Human Effort and Improving Quality in Peer
Code Reviews Using Automatic Static Analysis and Reviewer Recommendation.
In Proceedings of the 35th International Conference on Software Engineering
(ICSE), pages 931–940. IEEE, 2013. doi:10.1109/ICSE.2013.6606642

https://doi.org/10.1109/ICSE.2013.6606642

22/29

Code Style @yegor256

Moritz Beller

“Most Automated Static Analysis Tools

configurations deviate slightly from the default, but

hardly any introduce new custom analyses. ”

— Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman.
Analyzing the State of Static Analysis: A Large-Scale Evaluation in Open
Source Software. In Proceedings of the 23rd International Conference on Software
Analysis, Evolution, and Reengineering (SANER), volume 1, pages 470–481. IEEE,
2016. doi:10.1109/saner.2016.105

https://doi.org/10.1109/saner.2016.105

23/29

Code Style @yegor256

Source: Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyzing the State of Static

Analysis: A Large-Scale Evaluation in Open Source Software. In Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 470–481. IEEE, 2016.

doi:10.1109/saner.2016.105

https://doi.org/10.1109/saner.2016.105

24/29

Code Style @yegor256

Source: Moritz Beller, Radjino Bholanath, Shane McIntosh, and Andy Zaidman. Analyzing the State of Static

Analysis: A Large-Scale Evaluation in Open Source Software. In Proceedings of the 23rd International Conference
on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 470–481. IEEE, 2016.

doi:10.1109/saner.2016.105

https://doi.org/10.1109/saner.2016.105

25/29

Code Style @yegor256

Fiorella Zampetti

“Results indicate that build breakages due to static

analysis tools are mainly related to adherence to

coding standards, and there is also some attention to

missing licenses. Build failures related to tools

identifying potential bugs or vulnerabilities occur

less frequently, and in some cases such tools are

activated in a ‘softer’ mode, without making the

build fail.”

— Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto, Gerardo Canfora, and
Massimiliano Di Penta. How Open Source Projects Use Static Code Analysis
Tools in Continuous Integration Pipelines. In Proceedings of the 14th
International Conference on Mining Software Repositories (MSR), pages 334–344.
IEEE, 2017. doi:10.1109/msr.2017.2

https://doi.org/10.1109/msr.2017.2

26/29

Code Style @yegor256

Jennifer Bauer

“While the perceptual processing of code is required

to understand it, higher level processing, such as

understanding its semantics and reasoning about its

functionality, affect program comprehensibility more

strongly. The influence of indentation could have

been masked by these side effects, so it might well

be that the effect of indentation comes more into

play when the code is longer and more complex.”

— Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and
Sven Apel. Indentation: Simply a Matter of Style or Support for Program
Comprehension? In Proceedings of the 27th International Conference on Program
Comprehension (ICPC), pages 154–164. IEEE, 2019. doi:10.1109/icpc.2019.00033

https://doi.org/10.1109/icpc.2019.00033

27/29

Code Style @yegor256

Weiqin Zou

“A pull request that is consistent with the current

code style tends to be merged into the codebase

more easily (faster).”

— Jennifer Bauer, Janet Siegmund, Norman Peitek, Johannes C. Hofmeister, and
Sven Apel. Indentation: Simply a Matter of Style or Support for Program
Comprehension? In Proceedings of the 27th International Conference on Program
Comprehension (ICPC), pages 154–164. IEEE, 2019. doi:10.1109/icpc.2019.00033

https://doi.org/10.1109/icpc.2019.00033

28/29

Code Style @yegor256

References
Vipin Balachandran. Reducing Human Effort and

ImprovingQuality in Peer Code Reviews Using

Automatic Static Analysis and Reviewer

Recommendation. In Proceedings of the 35th
International Conference on Software Engineering
(ICSE), pages 931–940. IEEE, 2013.
doi:10.1109/ICSE.2013.6606642.

Jennifer Bauer, Janet Siegmund, Norman Peitek,

Johannes C. Hofmeister, and Sven Apel.

Indentation: Simply a Matter of Style or Support

for Program Comprehension? In Proceedings of
the 27th International Conference on Program
Comprehension (ICPC), pages 154–164. IEEE, 2019.
doi:10.1109/icpc.2019.00033.

Moritz Beller, Radjino Bholanath, Shane McIntosh,

and Andy Zaidman. Analyzing the State of Static

Analysis: A Large-Scale Evaluation in Open

Source Software. In Proceedings of the 23rd
International Conference on Software Analysis,

Evolution, and Reengineering (SANER), volume 1,

pages 470–481. IEEE, 2016.

doi:10.1109/saner.2016.105.

R. E. Berry and B. A. E. Meekings. A Style Analysis of

C Programs. Communications of the ACM, 28(1):

80–88, 1985. doi:10.1145/2465.2469.

Cathal Boogerd and Leon Moonen. Assessing the

Value of Coding Standards: An Empirical Study.

In Proceedings of the International Conference on
Software Maintenance, pages 277–286. IEEE, 2008.
doi:10.1109/icsm.2008.4658076.

Yegor Bugayenko. Strict Control of Java CodeQuality.

https://www.yegor256.com/140813.html, aug
2014. [Online; accessed 26-02-2024].

Raymond P. L. Buse and Westley R. Weimer.

Learning a Metric for Code Readability. IEEE
Transactions on Software Engineering, 36(4):
546–558, 2009. doi:10.1109/TSE.2009.70.

Christian Collberg, Clark Thomborson, and Douglas

Low. A Taxonomy of Obfuscating

Transformations, 1997.

https://doi.org/10.1109/ICSE.2013.6606642
https://doi.org/10.1109/icpc.2019.00033
https://doi.org/10.1109/saner.2016.105
https://doi.org/10.1145/2465.2469
https://doi.org/10.1109/icsm.2008.4658076
https://www.yegor256.com/140813.html
https://doi.org/10.1109/TSE.2009.70

29/29

Code Style @yegor256

Robert Green and Henry Ledgard. Coding

Guidelines: Finding the Art in the Science.

Communications of the ACM, 54(12):57–63, 2011.

doi:10.1145/2043174.2043191.

Warren Harrison and Curtis R. Cook. A Note on the

Berry-Meekings Style Metric. Communications of
the ACM, 29(2):123–125, 1986.

doi:10.1145/5657.5660.

Brian W. Kernighan and Phillip James Plauger. The
Elements of Programming Style. McGraw-Hill, Inc,

1974. doi:10.5555/601121.

David Marca. Some Pascal Style Guidelines. ACM
SIGPLAN Notices, 16(4):70–80, 1981.
doi:10.1145/988131.988140.

Michael J. Rees. Automatic Assessment Aids for

Pascal Programs. ACM SIGPLAN Notices, 17(10):
33–42, 1982. doi:10.1145/948086.948088.

Peter C. Rigby and Margaret-Anne Storey.

Understanding Broadcast Based Peer Review on

Open Source Software Projects. In Proceedings of
the 33rd International Conference on Software
Engineering, pages 541–550, 2011.
doi:10.1145/1985793.1985867.

Fiorella Zampetti, Simone Scalabrino, Rocco Oliveto,

Gerardo Canfora, and Massimiliano Di Penta.

How Open Source Projects Use Static Code

Analysis Tools in Continuous Integration

Pipelines. In Proceedings of the 14th International
Conference on Mining Software Repositories (MSR),
pages 334–344. IEEE, 2017. doi:10.1109/msr.2017.2.

https://doi.org/10.1145/2043174.2043191
https://doi.org/10.1145/5657.5660
https://doi.org/10.5555/601121
https://doi.org/10.1145/988131.988140
https://doi.org/10.1145/948086.948088
https://doi.org/10.1145/1985793.1985867
https://doi.org/10.1109/msr.2017.2

