
Builds

Yegor Bugayenko

Lecture #21 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=QQUda0fAcxE


2/35

Builds @yegor256

Grady Booch

“In general, there may be more internal releases to

the development team, with only a few executable

releases turned over to external parties. The internal

releases represent a sort of continuous integration of

the system and exist to force closure on some key

system areas.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

https://doi.org/10.5555/1407387


3/35

Builds @yegor256

Michael Cusumano

“Regardless of how often individual developers

check in their changes to the source code, a

designated developer, called the project build master,

generates a complete build of the product on a daily

basis using the master version of the source code.”

— Michael A. Cusumano and Richard W. Selby. How Microsoft Builds Software.
Communications of the ACM, 40(6):53–61, 1997. doi:10.1145/255656.255698

https://doi.org/10.1145/255656.255698


4/35

Builds @yegor256

“[In Microsoft], the rule is that if developers check

in code that ‘breaks’ the build by preventing it from

completing the recompilation, they must fix the

defect immediately.”

— Michael A. Cusumano and Richard W. Selby. How Microsoft Builds Software.
Communications of the ACM, 40(6):53–61, 1997. doi:10.1145/255656.255698

https://doi.org/10.1145/255656.255698


5/35

Builds @yegor256

Kent Beck

“Developers need freedom to make changes where

they make the most sense. Therefore, integrate and

test several times a day. Throw away unintegrated

code after a couple of days and start over. Ignore

code ownership. Program in pairs. Don’t integrate

without unit tests.”

— Kent Beck. Extreme Programming: A Humanistic Discipline of Software
Development. In Proceedings of the International Conference on Fundamental
Approaches to Software Engineering, pages 1–6. Springer, 1998.
doi:10.1007/bfb0053579

https://doi.org/10.1007/bfb0053579


6/35

Builds @yegor256

Martin Fowler

“For most projects, the XP guideline of a ten minute

build is perfectly within reason. Most of our modern

projects achieve this. It’s worth putting in

concentrated effort to make it happen, because

every minute chiseled off the build time is a minute

saved for each developer every time they commit.”

— Martin Fowler. Continuous Integration.
http://martinfowler.com/articles/continuousIntegration.html,
2006. [Online; accessed 07-02-2024]

http://martinfowler.com/articles/continuousIntegration.html


7/35

Builds @yegor256

Jez Humble

“Automation is the key. It allows all of the common

tasks involved in the creation and deployment of

software to be performed by developers, testers, and

operations personnel, at the push of a button.”

— Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Pearson Education, 2010.
doi:10.5555/1869904

https://doi.org/10.5555/1869904


8/35

Builds @yegor256

Bogdan Vasilescu

“Our main finding is that continuous integration

improves the productivity of project teams, who can

integrate more outside contributions, without an

observable diminishment in code quality.”

— Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and
Vladimir Filkov. Quality and Productivity Outcomes Relating to Continuous
Integration in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, pages 805–816, 2015. doi:10.1145/2786805.2786850

https://doi.org/10.1145/2786805.2786850


9/35

Builds @yegor256

Kai Huang

“Our results show there are good reasons for the rise

of CI. Compared to projects that do not use CI,

projects that use CI: release twice as often, accept

pull requests faster (1.6x), and have developers who

are less worried about breaking the build.”

— Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny
Dig. Usage, Costs, and Benefits of Continuous Integration in Open-Source
Projects. In Proceedings of the 31st International Conference on Automated
Software Engineering, pages 426–437, 2016. doi:10.1145/2970276.2970358

https://doi.org/10.1145/2970276.2970358


10/35

Builds @yegor256

“In the most popular (starred)

group, 70% of projects use CI. As

the projects become less popular,

the percentage of projects using CI

declines to 23%. Observation:

Popular projects are more likely to

use CI.”

Source: Michael Hilton, Timothy Tunnell, Kai Huang,

Darko Marinov, and Danny Dig. Usage, Costs, and

Benefits of Continuous Integration in Open-Source

Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426–437, 2016. doi:10.1145/2970276.2970358

https://doi.org/10.1145/2970276.2970358


11/35

Builds @yegor256

“Languages that have the highest CI

usage are also dynamically-typed

(e.g., Python and JavaScript). One

possible explanation may be that in

the absence of a static type system

which can catch errors early on,

these languages use CI to provide

extra safety.”

Source: Michael Hilton, Timothy Tunnell, Kai Huang,

Darko Marinov, and Danny Dig. Usage, Costs, and

Benefits of Continuous Integration in Open-Source

Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426–437, 2016. doi:10.1145/2970276.2970358

https://doi.org/10.1145/2970276.2970358


12/35

Builds @yegor256

“The average build time is just

under 500 seconds. Errored builds

are those that occur before the

build begins (e.g., when a

dependency cannot be

downloaded), and failed builds are

those that the build is not

completed successfully.”

Source: Michael Hilton, Timothy Tunnell, Kai Huang,

Darko Marinov, and Danny Dig. Usage, Costs, and

Benefits of Continuous Integration in Open-Source

Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426–437, 2016. doi:10.1145/2970276.2970358

https://doi.org/10.1145/2970276.2970358


13/35

Builds @yegor256

Michael Hilton

“Developers use CI to guarantee quality, consistency,

and viability across different environments.

However, adding and maintaining automated tests

causes these benefits to come at the expense of

increased time and effort.”

— Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and
Danny Dig. Trade-Offs in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, pages 197–207, 2017. doi:10.1145/3106237.3106270

https://doi.org/10.1145/3106237.3106270


14/35

Builds @yegor256

“When a CI build fails, some

participants begin the process of

identifying why the build failed.

Sometimes, this can be fairly

straightforward...”

Source: Michael Hilton, Nicholas Nelson, Timothy

Tunnell, Darko Marinov, and Danny Dig. Trade-Offs

in Continuous Integration: Assurance, Security, and

Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197–207,
2017. doi:10.1145/3106237.3106270

https://doi.org/10.1145/3106237.3106270


15/35

Builds @yegor256

“[Fowler, 2006] suggests most

projects should try to follow the XP

guideline of a 10-minute build.

When we asked our 523

participants what is the maximum

acceptable time for a CI build to

take, the most common answer

was also 10 minutes.”

Source: Michael Hilton, Nicholas Nelson, Timothy

Tunnell, Darko Marinov, and Danny Dig. Trade-Offs

in Continuous Integration: Assurance, Security, and

Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197–207,
2017. doi:10.1145/3106237.3106270

https://doi.org/10.1145/3106237.3106270


16/35

Builds @yegor256

“Pivotal developers experienced

similar numbers of flaky and true

CI failures per week. However, for

the largest category, >10 fails a

week, there were twice as many

flaky failures as true failures.”

Source: Michael Hilton, Nicholas Nelson, Timothy

Tunnell, Darko Marinov, and Danny Dig. Trade-Offs

in Continuous Integration: Assurance, Security, and

Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197–207,
2017. doi:10.1145/3106237.3106270

https://doi.org/10.1145/3106237.3106270


17/35

Builds @yegor256

John Micco

“Unfortunately, across our entire corpus of tests, we

[in Google] see a continual rate of about 1.5% of all

test runs reporting a ‘flaky’ result.”

— John Micco. Flaky Tests at Google and How We Mitigate Them.
https://testing.googleblog.com/2016/05/
flaky-tests-at-google-and-how-we.html, may 2016. [Online; accessed
25-02-2024]

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html


18/35

Builds @yegor256

Google Thoughts About Flaky Tests

•Almost 16% of our 4.2M tests have some level of flakiness

• 84% of transitions from Pass -> Fail are from ‘flaky’ tests

•We spend up to 16% of our compute resources re-running flaky tests

• Certain people/automation more likely to cause breakages (oops!)

• Certain languages more likely to cause breakages (sorry)

Source: John Micco. The State of Continuous Integration Testing at Google. ICST, 2017



19/35

Builds @yegor256

Carmine Vassallo

“In total, the 349 projects underwent 116,741 builds,

of which 30,792 (26%) failed. It is interesting to

notice how the percentage of build failures is

approximately the same in OSS and ING.”

— Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano,
Philipp Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano
Panichella. A Tale of CI Build Failures: An Open Source and a Financial
Organization Perspective. In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), pages 183–193. IEEE, 2017.
doi:10.1109/ICSME.2017.67

https://doi.org/10.1109/ICSME.2017.67


20/35

Builds @yegor256

Thomas Rausch

“Process metrics have a significant impact on the

build outcome in 8 of the 14 projects on average, but

the strongest influencing factor across all projects is

overall stability in the recent build history. For 10

projects, more than 50% (up to 80%) of all failed

builds follow a previous build failure.”

— Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An
Empirical Analysis of Build Failures in the Continuous Integration Workflows
of Java-Based Open-Source Software. In Proceedings of the 14th International
Conference on Mining Software Repositories, pages 345–355. IEEE, 2017.
doi:10.1109/msr.2017.54

https://doi.org/10.1109/msr.2017.54


21/35

Builds @yegor256

Source: Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An Empirical Analysis of

Build Failures in the Continuous Integration Workflows of Java-Based Open-Source Software. In Proceedings of
the 14th International Conference on Mining Software Repositories, pages 345–355. IEEE, 2017.
doi:10.1109/msr.2017.54

https://doi.org/10.1109/msr.2017.54


22/35

Builds @yegor256

Source: Thomas Rausch, Waldemar Hummer, Philipp

Leitner, and Stefan Schulte. An Empirical Analysis of

Build Failures in the Continuous Integration

Workflows of Java-Based Open-Source Software. In

Proceedings of the 14th International Conference on
Mining Software Repositories, pages 345–355. IEEE,
2017. doi:10.1109/msr.2017.54

“On average, 41% of builds fail

because of test failures... On

average, 30% of errors occur in the

first half of the build runtime. The

later half is dominated by 70%

testfailures. Together with a

build-retry approach, testfailures

can cause long delays in the

feedback loop.”

https://doi.org/10.1109/msr.2017.54


23/35

Builds @yegor256

Romit Jain

“We observed that team size generally increases the

number of build failures. The interesting observation

here is the minima after which there is a positive

curve.”

— Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build
Failures in Continuous Integration: Causation and Effect. In Proceedings of the
Progress in Advanced Computing and Intelligent Engineering, pages 17–27.
Springer, 2018. doi:10.1007/978-981-13-0224-4_2

https://doi.org/10.1007/978-981-13-0224-4_2


24/35

Builds @yegor256

Source: Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build Failures in Continuous

Integration: Causation and Effect. In Proceedings of the Progress in Advanced Computing and Intelligent
Engineering, pages 17–27. Springer, 2018. doi:10.1007/978-981-13-0224-4_2

https://doi.org/10.1007/978-981-13-0224-4_2


25/35

Builds @yegor256

Source: Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build Failures in Continuous

Integration: Causation and Effect. In Proceedings of the Progress in Advanced Computing and Intelligent
Engineering, pages 17–27. Springer, 2018. doi:10.1007/978-981-13-0224-4_2

https://doi.org/10.1007/978-981-13-0224-4_2


26/35

Builds @yegor256

On October 16, 2018,

GitHub launched “Actions”



27/35

Builds @yegor256

Mehdi Golzadeh

“Together with Travis, GHA covers more than 80% of

all usages. Moreover, in only 18 months GHA has

overtaken all other CIs in popularity.”

— Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the Rise and Fall of
CI Services in GitHub. In Proceedings of the International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 662–672. IEEE, 2022.
doi:10.1109/SANER53432.2022.00084

https://doi.org/10.1109/SANER53432.2022.00084


28/35

Builds @yegor256

Source: Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the Rise and Fall of CI Services in GitHub. In

Proceedings of the International Conference on Software Analysis, Evolution and Reengineering (SANER), pages
662–672. IEEE, 2022. doi:10.1109/SANER53432.2022.00084

https://doi.org/10.1109/SANER53432.2022.00084


29/35

Builds @yegor256

Wing Lam

“We find that 53% of flaky tests detected in CI runs

are not detected in isolation.”

— Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko
Marinov. Understanding Reproducibility and Characteristics of Flaky Tests
Through Test Reruns in Java Projects. In Proceedings of the 31st International
Symposium on Software Reliability Engineering (ISSRE), pages 403–413. IEEE,
2020. doi:10.1109/issre5003.2020.00045

https://doi.org/10.1109/issre5003.2020.00045


30/35

Builds @yegor256

Owain Parry

“The causes and associated factors of flaky tests:

1. Asynchronicity and Concurrency, 2. Platform

Dependencies, 3. Floating-Point numbers,

4. Order-dependent tests, 5. Unordered Collections,

6. Shared access to static fields, 7. Timeouts, 8. I/O

and Network, 9. Algorithmic Non-determinism.”

— Owain Parry, Gregory M. Kapfhammer, Michael Hilton, and Phil McMinn. A
Survey of Flaky Tests. ACM Transactions on Software Engineering and
Methodology, 31(1):1–74, 2021. doi:10.1145/3476105

https://doi.org/10.1145/3476105


31/35

Builds @yegor256

Pei Liu

“We start by collecting a set of 84,475 open-source

Android apps from the most popular three online

code hosting sites, namely Github, GitLab, and

Bitbucket. We then look into those apps and find

that only around 10% of apps have leveraged CI/CD

services, i.e., the majority of open-source Android

apps are developed without accessing CI/CD

services.”

— Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li. A
First Look at CI/CD Adoptions in Open-Source Android Apps. In Proceedings of
the 37th International Conference on Automated Software Engineering, pages 1–6,
2022. doi:10.1145/3551349.3561341

https://doi.org/10.1145/3551349.3561341


32/35

Builds @yegor256

Shanto Rahman

“FlakeSync works by identifying a critical point,

representing some key part of code that must be

executed early w.r.t. other concurrently executing

code, and a barrier point, representing the part of

code that should wait until the critical point has

been executed. FlakeSync can modify code to check

when the critical point is executed and have the

barrier point keep waiting until the critical point has

been executed, essentially synchronizing these two

parts of code for the specific test execution.”

— Shanto Rahman and August Shi. FlakeSync: Automatically Repairing Async
Flaky Tests. In Proceedings of the 46th International Conference on Software
Engineering (ICSE), page 920. IEEE, 2024



33/35

Builds @yegor256

References
Kent Beck. Extreme Programming: A Humanistic

Discipline of Software Development. In

Proceedings of the International Conference on
Fundamental Approaches to Software Engineering,
pages 1–6. Springer, 1998. doi:10.1007/bfb0053579.

Grady Booch, Robert A. Maksimchuk, Michael W.

Engle, Bobbi J. Young, Jim Connallen, and Kelli A.

Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.

doi:10.5555/1407387.

Michael A. Cusumano and Richard W. Selby. How

Microsoft Builds Software. Communications of the
ACM, 40(6):53–61, 1997.

doi:10.1145/255656.255698.

Martin Fowler. Continuous Integration.

http://martinfowler.com/articles/
continuousIntegration.html, 2006. [Online;
accessed 07-02-2024].

Mehdi Golzadeh, Alexandre Decan, and Tom Mens.

On the Rise and Fall of CI Services in GitHub. In

Proceedings of the International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 662–672. IEEE, 2022.
doi:10.1109/SANER53432.2022.00084.

Michael Hilton, Timothy Tunnell, Kai Huang, Darko

Marinov, and Danny Dig. Usage, Costs, and

Benefits of Continuous Integration in

Open-Source Projects. In Proceedings of the 31st
International Conference on Automated Software
Engineering, pages 426–437, 2016.
doi:10.1145/2970276.2970358.

Michael Hilton, Nicholas Nelson, Timothy Tunnell,

Darko Marinov, and Danny Dig. Trade-Offs in

Continuous Integration: Assurance, Security, and

Flexibility. In Proceedings of the 11th Joint Meeting
on Foundations of Software Engineering, pages
197–207, 2017. doi:10.1145/3106237.3106270.

Jez Humble and David Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Pearson Education, 2010.

doi:10.5555/1869904.

https://doi.org/10.1007/bfb0053579
https://doi.org/10.5555/1407387
https://doi.org/10.1145/255656.255698
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.5555/1869904


34/35

Builds @yegor256

Romit Jain, Saket Kumar Singh, and Bharavi Mishra.

A Brief Study on Build Failures in Continuous

Integration: Causation and Effect. In Proceedings
of the Progress in Advanced Computing and
Intelligent Engineering, pages 17–27. Springer,
2018. doi:10.1007/978-981-13-0224-4_2.

Wing Lam, Stefan Winter, Angello Astorga, Victoria

Stodden, and Darko Marinov. Understanding

Reproducibility and Characteristics of Flaky Tests

Through Test Reruns in Java Projects. In

Proceedings of the 31st International Symposium on
Software Reliability Engineering (ISSRE), pages
403–413. IEEE, 2020.

doi:10.1109/issre5003.2020.00045.

Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John

Grundy, and Li Li. A First Look at CI/CD

Adoptions in Open-Source Android Apps. In

Proceedings of the 37th International Conference on
Automated Software Engineering, pages 1–6, 2022.
doi:10.1145/3551349.3561341.

John Micco. Flaky Tests at Google and How We

Mitigate Them.

https://testing.googleblog.com/2016/05/
flaky-tests-at-google-and-how-we.html,
may 2016. [Online; accessed 25-02-2024].

John Micco. The State of Continuous Integration

Testing at Google. ICST, 2017.

Owain Parry, Gregory M. Kapfhammer, Michael

Hilton, and Phil McMinn. A Survey of Flaky Tests.

ACM Transactions on Software Engineering and
Methodology, 31(1):1–74, 2021.
doi:10.1145/3476105.

Shanto Rahman and August Shi. FlakeSync:

Automatically Repairing Async Flaky Tests. In

Proceedings of the 46th International Conference on
Software Engineering (ICSE), page 920. IEEE, 2024.

Thomas Rausch, Waldemar Hummer, Philipp Leitner,

and Stefan Schulte. An Empirical Analysis of

Build Failures in the Continuous Integration

Workflows of Java-Based Open-Source Software.

In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 345–355.
IEEE, 2017. doi:10.1109/msr.2017.54.

https://doi.org/10.1007/978-981-13-0224-4_2
https://doi.org/10.1109/issre5003.2020.00045
https://doi.org/10.1145/3551349.3561341
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://doi.org/10.1145/3476105
https://doi.org/10.1109/msr.2017.54


35/35

Builds @yegor256

Bogdan Vasilescu, Yue Yu, Huaimin Wang,

Premkumar Devanbu, and Vladimir Filkov.

Quality and Productivity Outcomes Relating to

Continuous Integration in GitHub. In Proceedings
of the 10th Joint Meeting on Foundations of
Software Engineering, pages 805–816, 2015.
doi:10.1145/2786805.2786850.

Carmine Vassallo, Gerald Schermann, Fiorella

Zampetti, Daniele Romano, Philipp Leitner, Andy

Zaidman, Massimiliano Di Penta, and Sebastiano

Panichella. A Tale of CI Build Failures: An Open

Source and a Financial Organization Perspective.

In Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME),
pages 183–193. IEEE, 2017.

doi:10.1109/ICSME.2017.67.

https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1109/ICSME.2017.67

