YEGOR BUGAYENKO

Lecture #21 out of 24
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=QQUda0fAcxE

Builds

“In general, there may be more internal releases to
the development team, with only a few executable
releases turned over to external parties. The internal
releases represent a sort of continuous integration of
the system and exist to force closure on some key
system areas.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

GRADY BoocH

2/35

Qyegor256

https://doi.org/10.5555/1407387

3/35

“Regardless of how often individual developers
check in their changes to the source code, a
designated developer, called the project build master,
generates a complete build of the product on a daily
basis using the master version of the source code.”

— Michael A. Cusumano and Richard W. Selby. How Microsoft Builds Software.
Communications of the ACM, 40(6):53-61, 1997. d0i:10.1145/255656.255698

MicHAEL CUSUMANO

Builds Qyegor256

https://doi.org/10.1145/255656.255698

4/35

“[In Microsoft], the rule is that if developers check
in code that ‘breaks’ the build by preventing it from
completing the recompilation, they must fix the
defect immediately.”

SOfl vv a_re — Michael A. Cusumano and Richard W. Selby. How Microsoft Builds Software.

Communications of the ACM, 40(6):53-61, 1997. doi:10.1145/255656.255698

Teams of pr s and testers freq ly synchroni
and periodically stabilize the changes they make to products
in progress, yielding Excel, Office, Publisher, Windows 95,

Windows NT, Word, Works, and more.

Since che mid-1980s, Microsoft and other PC software companies have grad-
ually reorganized the way they build software products in response to quality
problems and delayed deliveries [10]. Many have also found it necessary to
organize larger teams in order to build up-to-date PC software products that
now consist of hundreds of thousands or even millions of lines of source code

and require hundreds of people to build and test over periods of one or more

CoMMUNICKTIONS OF THE AGH e 199740 10,85 6

Builds Qyegor256

https://doi.org/10.1145/255656.255698

5/35

“Developers need freedom to make changes where

they make the most sense. Therefore, integrate and
test several times a day. Throw away unintegrated

code after a couple of days and start over. Ignore

code ownership. Program in pairs. Don’t integrate
without unit tests.”

— Kent Beck. Extreme Programming: A Humanistic Discipline of Software
Development. In Proceedings of the International Conference on Fundamental

Approaches to Software Engineering, pages 1-6. Springer, 1998.
d0i:10.1007/bfb0053579

KENT BECK

Builds Qyegor256

https://doi.org/10.1007/bfb0053579

6/35

“For most projects, the XP guideline of a ten minute
build is perfectly within reason. Most of our modern
projects achieve this. It’s worth putting in
concentrated effort to make it happen, because
every minute chiseled off the build time is a minute
saved for each developer every time they commit.”

— Martin Fowler. Continuous Integration.
http://martinfowler.com/articles/continuousIntegration.html,
2006. [Online; accessed 07-02-2024]

MARTIN FOWLER

Builds Qyegor256

http://martinfowler.com/articles/continuousIntegration.html

7/35

“Automation is the key. It allows all of the common
tasks involved in the creation and deployment of
software to be performed by developers, testers, and
operations personnel, at the push of a button.”

— Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases

Through Build, Test, and Deployment Automation. Pearson Education, 2010.
d0i:10.5555/1869904

Jez HUMBLE

Builds Qyegor256

https://doi.org/10.5555/1869904

8/35

“Our main finding is that continuous integration
improves the productivity of project teams, who can

integrate more outside contributions, without an
observable diminishment in code quality.”

— Bogdan Vasilescu, Yue Yu, Huaimin Wang, Premkumar Devanbu, and
Vladimir Filkov. Quality and Productivity Outcomes Relating to Continuous

Integration in GitHub. In Proceedings of the 10th Joint Meeting on Foundations of
Software Engineering, pages 805-816, 2015. d0i:10.1145/2786805.2786850

BOGDAN VASILESCU

Builds

Qyegor256

https://doi.org/10.1145/2786805.2786850

9/35

“Our results show there are good reasons for the rise
of Cl. Compared to projects that do not use Cl,
projects that use Cl: release twice as often, accept

pull requests faster (1.6x), and have developers who
are less worried about breaking the build.”

— Michael Hilton, Timothy Tunnell, Kai Huang, Darko Marinov, and Danny

Dig. Usage, Costs, and Benefits of Continuous Integration in Open-Source

Projects. In Proceedings of the 31st International Conference on Automated
Software Engineering, pages 426—437, 2016. d0i:10.1145/2970276.2970358

KAl HUANG

Builds Qyegor256

https://doi.org/10.1145/2970276.2970358

Builds

60 70 80
! | |

50
!

Percent using CI
40

30
|

[
[aV] [T I [1
6184 739 374 124 108
Number of Stars

Figure 1: CI usage of projects in GitHub. Projects
are sorted by popularity (number of stars).

10/35

“In the most popular (starred)
group, 70% of projects use Cl. As
the projects become less popular,
the percentage of projects using Cl
declines to 23%. Observation:

Popular projects are more likely to
use CI”

Source: Michael Hilton, Timothy Tunnell, Kai Huang,
Darko Marinov, and Danny Dig. Usage, Costs, and
Benefits of Continuous Integration in Open-Source
Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426-437, 2016. doi:10.1145/2970276.2970358

Qyegor256

https://doi.org/10.1145/2970276.2970358

Builds

Table 3: CI usage by programing language. For
each language, the columns tabulate: the number
of projects from our corpus that predominantly use
that language, how many of these projects use CI,
the percentage of projects that use CI.

Language Total Projects # Using CI Percent CI

Scala 329 221 67.17
Ruby 2721 1758 64.61
Go 1159 702 60.57
PHP 1806 982 54.37
CoffeeScript 343 176 51.31
Clojure 323 152 47.06
Python 3113 1438 46.19
Emacs Lisp 150 67 44.67
JavaScript 8495 3692 43.46
Other 1710 714 41.75
C++ 1233 483 39.17
Swift 723 273 37.76
Java 3371 1188 35.24
C 1321 440 33.31
C# 652 188 28.83
Perl 140 38 27.14
Shell 709 185 26.09
HTML 948 241 25.42
CSS 937 194 20.70
Objective-C 2745 561 20.44
VimL 314 59 18.79

11/35

“Languages that have the highest ClI
usage are also dynamically-typed
(e.g., Python and JavaScript). One
possible explanation may be that in
the absence of a static type system
which can catch errors early on,
these languages use Cl to provide
extra safety.”

Source: Michael Hilton, Timothy Tunnell, Kai Huang,
Darko Marinov, and Danny Dig. Usage, Costs, and
Benefits of Continuous Integration in Open-Source
Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426-437, 2016. doi:10.1145/2970276.2970358

Qyegor256

https://doi.org/10.1145/2970276.2970358

12/35

“The average build time is just
under 500 seconds. Errored builds
------------------------------------ | are those that occur before the
build begins (e.g., when a
dependency cannot be
downloaded), and failed builds are
Figure 5: Build time distribution by result, in sec- those that the build is not

e completed successfully.”

1
-

|
-

errored failed passed
|

T T T T I
0 1000 2000 3000 4000 5000

Source: Michael Hilton, Timothy Tunnell, Kai Huang,
Darko Marinov, and Danny Dig. Usage, Costs, and
Benefits of Continuous Integration in Open-Source
Projects. In Proceedings of the 31st International
Conference on Automated Software Engineering, pages
426-437, 2016. doi:10.1145/2970276.2970358

Builds Qyegor256

https://doi.org/10.1145/2970276.2970358

13/35

“Developers use Cl to guarantee quality, consistency,
and viability across different environments.
However, adding and maintaining automated tests

causes these benefits to come at the expense of
increased time and effort.”

— Michael Hilton, Nicholas Nelson, Timothy Tunnell, Darko Marinov, and
Danny Dig. Trade-Offs in Continuous Integration: Assurance, Security, and

Flexibility. In Proceedings of the 11th Joint Meeting on Foundations of Software
Engineering, pages 197-207, 2017. d0i:10.1145/3106237.3106270

MICHAEL HILTON

Builds Qyegor256

https://doi.org/10.1145/3106237.3106270

14/35

¢ . B

Table 2: Barriers developers encounter when using CI W h en a C l b ul I d fal IS ’ some
P Broad Fooused participants begin the process of
B1 Troubleshooting a CI build failure 50% 64%
B2 Overly lons bud times o identifying why the build failed.
B3 Automating the build process 34% 26% . h . b _[_' . I
B4 Lack of support for the desired workflow 31% 42% Sometl mes, t IS Can D€ Talr y
B5 Setting up a CI server or service 27% 29% . 99
B6 Maintaining a CI server or service 27% 40% St ral g h th rwa I’d coe
B7 Lack of tool integration 26% 12%
B8 Security and access controls 21% 14%

Source: Michael Hilton, Nicholas Nelson, Timothy
Tunnell, Darko Marinov, and Danny Dig. Trade-Offs
in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197-207,
2017. doi:10.1145/3106237.3106270

Builds Qyegor256

https://doi.org/10.1145/3106237.3106270

Builds

200

150

100

50
—

0

Figure 1: Maximum acceptable build time (minutes)

“[Fowler, 2006] suggests most
projects should try to follow the XP
guideline of a 10-minute build.
When we asked our 523
participants what is the maximum
acceptable time for a Cl build to
take, the most common answer
was also 10 minutes.”

Source: Michael Hilton, Nicholas Nelson, Timothy
Tunnell, Darko Marinov, and Danny Dig. Trade-Offs
in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197-207,
2017. doi:10.1145/3106237.3106270

15/35

Qyegor256

https://doi.org/10.1145/3106237.3106270

16/35

o T “Pivotal developers experienced
o similar numbers of flaky and true
Cl failures per week. However, for
the largest category, >10 fails a
week, there were twice as many

flaky failures as true failures.”

0

None 1 fail 2-3 fails 4-5 fails 5-10 fails =10 fails

Figure 6: Flaky vs True test failures reported by Pivotal de-
velopers (N=42)

Source: Michael Hilton, Nicholas Nelson, Timothy
Tunnell, Darko Marinov, and Danny Dig. Trade-Offs
in Continuous Integration: Assurance, Security, and
Flexibility. In Proceedings of the 11th Joint Meeting on
Foundations of Software Engineering, pages 197-207,
2017. doi:10.1145/3106237.3106270

Builds Qyegor256

https://doi.org/10.1145/3106237.3106270

17/35

“Unfortunately, across our entire corpus of tests, we

[in Google] see a continual rate of about 1.5% of all
test runs reporting a ‘flaky’ result.”

— John Micco. Flaky Tests at Google and How We Mitigate Them.
https://testing.googleblog.com/2016/05/

flaky-tests-at-google-and-how-we.html, may 2016. [Online; accessed
25-02-2024]

JoHN Micco

Builds

Qyegor256

https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html

18/35

Google Thoughts About Flaky Tests

« Almost 16% of our 4.2M tests have some level of flakiness

« 84% of transitions from Pass -> Fail are from ‘flaky’ tests

« We spend up to 16% of our compute resources re-running flaky tests
« Certain people/automation more likely to cause breakages (oops!)

e Certain languages more likely to cause breakages (sorry)

Source: John Micco. The State of Continuous Integration Testing at Google. ICST, 2017

Builds Qyegor256

Builds

CARMINE VASSALLO

19/35

“In total, the 349 projects underwent 116,741 builds,
of which 30,792 (26%) failed. It is interesting to

notice how the percentage of build failures is
approximately the same in OSS and ING.”

— Carmine Vassallo, Gerald Schermann, Fiorella Zampetti, Daniele Romano,
Philipp Leitner, Andy Zaidman, Massimiliano Di Penta, and Sebastiano

Panichella. A Tale of CI Build Failures: An Open Source and a Financial
Organization Perspective. In Proceedings of the International Conference on

Software Maintenance and Evolution (ICSME), pages 183-193. IEEE, 2017.
doi:10.1109/ICSME.2017.67

Qyegor256

https://doi.org/10.1109/ICSME.2017.67

Builds

V8

THOMAS RAUSCH

20/35

“Process metrics have a significant impact on the
build outcome in 8 of the 14 projects on average, but
the strongest influencing factor across all projects is
overall stability in the recent build history. For 10

projects, more than 50% (up to 80%) of all failed
builds follow a previous build failure.”

" — Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An

Empirical Analysis of Build Failures in the Continuous Integration Workflows
of Java-Based Open-Source Software. In Proceedings of the 14th International

Conference on Mining Software Repositories, pages 345-355. IEEE, 2017.
d0i:10.1109/msr.2017.54

Qyegor256

https://doi.org/10.1109/msr.2017.54

Builds

TABLE I
NAME, DESCRIPTION AND METADATA OF PROJECTS USED AS RESEARCH SUBJECTS

Name Description | Age VCS* Commits Committers | Age CI* Builds Build freq.* Fail ratio
Apache Storm Distributed computation framework 1961 11656 253 647 5472 8.5 0.69
Crate.IO Scalable SQL database 1390 13722 69 1024 21864 214 0.63
JabRef Application for managing BibTeX databases 1407 16851 112 1046 9615 9.2 0.29
Butterknife Android dependency injection library 1426 894 114 1426 1220 0.9 0.34
jcabi-github Object-oriented wrapper of Github API 1179 2543 60 1024 1316 1.3 0.45
Hystrix Fault tolerance library for distributed systems 1532 2321 103 880 1228 14 048
Openmicroscopy Microscopy data environment 4364 55571 59 1501 16383 10.9 0.19
Presto Distributed SQL query engine for big data 1635 23500 308 1180 19112 16.2 0.49
RxAndroid RxJava bindings for Android 1264 495 74 880 728 0.8 0.16
SpongeAPI Minecraft plugin API 874 3692 213 874 8835 10.1 0.24
Spring Boot Java application framework 1561 11300 566 1276 10051 7.9 0.28
Square OkHttp HTTP+HTTP/2 client for Android and Java 1651 3832 263 1576 7439 4.7 0.49
Square Retrofit HTTP client for Android and Java 2336 1640 231 1576 3040 1.9 0.20
WordPress-Android WordPress for Android 2697 21548 66 1191 15025 12.6 0.14

* in days

Source: Thomas Rausch, Waldemar Hummer, Philipp Leitner, and Stefan Schulte. An Empirical Analysis of
Build Failures in the Continuous Integration Workflows of Java-Based Open-Source Software. In Proceedings of
the 14th International Conference on Mining Software Repositories, pages 345-355. IEEE, 2017.
doi:10.1109/msr.2017.54

21/35

Qyegor256

https://doi.org/10.1109/msr.2017.54

Builds

TABLE II

DESCRIPTION AND FREQUENCY OF ERROR CATEGORIES

Label Projects Description

testfailure 12 An automated test did not pass

compile 12 Compilation error

git 12 VCS interaction error, e.g., worker fails to fetch code
buildconfig 11 Faulty build config, e.g., syntax error in pom.xml
crash 11 Build environment crashed or exceeded time limit
dependency 11 Dependency error, e.g., invalid version number
quality 10 Coding-rule violation during code inspection
unknown 9 Errors without a clearly identifiable cause
itestfailure 4 An automated integration test failed

doc 3 Documentation issue, e.g., undocumented methods
license 3 License criteria not met, e.g., missing license headers
compatibility 2 API incompatibility, e.g., due to version conflict
androidsdk 1 Android SDK-related error, e.g., download failed
buildout 1 Specific build error of Python submodule in Crate.IO

Source: Thomas Rausch, Waldemar Hummer, Philipp
Leitner, and Stefan Schulte. An Empirical Analysis of
Build Failures in the Continuous Integration
Workflows of Java-Based Open-Source Software. In
Proceedings of the 14th International Conference on
Mining Software Repositories, pages 345-355. IEEE,
2017. doi:10.1109/msr.2017.54

22/35

“On average, 41% of builds fail
because of test failures... On
average, 30% of errors occur in the
first half of the build runtime. The
later half is dominated by 70%
testfailures. Together with a
build-retry approach, testfailures
can cause long delays in the
feedback loop.”

Qyegor256

https://doi.org/10.1109/msr.2017.54

23/35

“We observed that team size generally increases the
number of build failures. The interesting observation

here is the minima after which there is a positive
curve.”

— Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build
Failures in Continuous Integration: Causation and Effect. In Proceedings of the
Progress in Advanced Computing and Intelligent Engineering, pages 17-27.
Springer, 2018. do0i:10.1007/978-981-13-0224-4_2

RoMIT JAIN

Builds Qyegor256

https://doi.org/10.1007/978-981-13-0224-4_2

24/35

Team size v/s Build Fail Relation for Java

Normalized Failures
0.1 0.2 0.3 04 05 06 07
|

50 60

L Wil IIHIHH
40

0 10 20 30

Team Size

Source: Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build Failures in Continuous
Integration: Causation and Effect. In Proceedings of the Progress in Advanced Computing and Intelligent
Engineering, pages 17-27. Springer, 2018. doi:10.1007/978-981-13-0224-4_2

Builds Qyegor256

https://doi.org/10.1007/978-981-13-0224-4_2

25/35

rails/rails

® 1.00-
| .

(@]

(&)

2

N
5075-
()]

o

©

2 050-
g

[@)]

£

3

s 0.25-
()]

>

©

g 0.00 -
>

O

0 1000 2000 3000

Total Number of Build Failures in the project

Source: Romit Jain, Saket Kumar Singh, and Bharavi Mishra. A Brief Study on Build Failures in Continuous
Integration: Causation and Effect. In Proceedings of the Progress in Advanced Computing and Intelligent
Engineering, pages 17-27. Springer, 2018. doi:10.1007/978-981-13-0224-4_2

Builds Qyegor256

https://doi.org/10.1007/978-981-13-0224-4_2

26/35

On October 16, 2018,
GitHub launched “Actions”

Builds Qyegor256

Builds

MEHDI GOLZADEH

“Together with Travis, GHA covers more than 80% of
all usages. Moreover, in only 18 months GHA has
overtaken all other Cls in popularity.”

— Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the Rise and Fall of
CI Services in GitHub. In Proceedings of the International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 662—672. IEEE, 2022.
doi:10.1109/SANER53432.2022.00084

27/35

Qyegor256

https://doi.org/10.1109/SANER53432.2022.00084

28/35

40000 4 —— Travis — Azure I
" | — GHA GitLabCl

-8 30000 = CircleCl - |enkins i
S 200001 — AppVeyor |
S 10000 - -

2
5 7500 - -

v
9 5000 A -

€
e 2500 - B
0 - — W — I#:T_'—I—-—_—I!
2012 2013 ZO!LJL 2015 201loc 2017 2018 2019 2020 2021

Fig. 2: Number of repositories using a specific CI.

Source: Mehdi Golzadeh, Alexandre Decan, and Tom Mens. On the Rise and Fall of Cl Services in GitHub. In
Proceedings of the International Conference on Software Analysis, Evolution and Reengineering (SANER), pages
662—-672. IEEE, 2022. doi:10.1109/SANER53432.2022.00084

Builds Qyegor256

https://doi.org/10.1109/SANER53432.2022.00084

29/35

“We find that 53% of flaky tests detected in Cl runs
are not detected in isolation.”

— Wing Lam, Stefan Winter, Angello Astorga, Victoria Stodden, and Darko
Marinov. Understanding Reproducibility and Characteristics of Flaky Tests
Through Test Reruns in Java Projects. In Proceedings of the 31st International

Symposium on Software Reliability Engineering (ISSRE), pages 403-413. IEEE,
2020. doi:10.1109/issre5003.2020.00045

WING LAM

Builds

Qyegor256

https://doi.org/10.1109/issre5003.2020.00045

30/35

“The causes and associated factors of flaky tests:

1. Asynchronicity and Concurrency, 2. Platform
Dependencies, 3. Floating-Point numbers,

4. Order-dependent tests, 5. Unordered Collections,
6. Shared access to static fields, 7. Timeouts, 8. 1/0
and Network, 9. Algorithmic Non-determinism.”

— Owain Parry, Gregory M. Kapthammer, Michael Hilton, and Phil McMinn. A
Survey of Flaky Tests. ACM Transactions on Software Engineering and
Methodology, 31(1):1-74, 2021. doi:10.1145/3476105

OWAIN PARRY

Builds Qyegor256

https://doi.org/10.1145/3476105

31/35

“We start by collecting a set of 84,475 open-source
Android apps from the most popular three online
code hosting sites, namely Github, GitLab, and
Bitbucket. We then look into those apps and find
that only around 10% of apps have leveraged CI/CD
services, i.e., the majority of open-source Android

apps are developed without accessing CI/CD
services.”

Per Liu

— Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John Grundy, and Li Li. A
First Look at CI/CD Adoptions in Open-Source Android Apps. In Proceedings of

the 37th International Conference on Automated Software Engineering, pages 1-6,
2022. doi:10.1145/3551349.3561341

Builds

Qyegor256

https://doi.org/10.1145/3551349.3561341

32/35

“FlakeSync works by identifying a critical point,
representing some key part of code that must be
executed early w.r.t. other concurrently executing
code, and a barrier point, representing the part of
code that should wait until the critical point has
been executed. FlakeSync can modify code to check
when the critical point is executed and have the
barrier point keep waiting until the critical point has
SHANTO RAHMAN been executed, essentially synchronizing these two
parts of code for the specific test execution.”

— Shanto Rahman and August Shi. FlakeSync: Automatically Repairing Async
Flaky Tests. In Proceedings of the 46th International Conference on Software
Engineering (ICSE), page 920. IEEE, 2024

Builds Qyegor256

Builds

References

Kent Beck. Extreme Programming: A Humanistic
Discipline of Software Development. In
Proceedings of the International Conference on
Fundamental Approaches to Software Engineering,

pages 1-6. Springer, 1998. doi:10.1007/bfb0053579.

Grady Booch, Robert A. Maksimchuk, Michael W.
Engle, Bobbi J. Young, Jim Connallen, and Kelli A.
Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.
doi:10.5555/1407387.

Michael A. Cusumano and Richard W. Selby. How
Microsoft Builds Software. Communications of the
ACM, 40(6):53-61, 1997.
doi:10.1145/255656.255698.

Martin Fowler. Continuous Integration.
http://martinfowler.com/articles/

continuousIntegration.html, 2006. [Online;
accessed 07-02-2024].

Mehdi Golzadeh, Alexandre Decan, and Tom Mens.

On the Rise and Fall of CI Services in GitHub. In
Proceedings of the International Conference on
Software Analysis, Evolution and Reengineering
(SANER), pages 662-672. IEEE, 2022.
doi:10.1109/SANER53432.2022.00084.

Michael Hilton, Timothy Tunnell, Kai Huang, Darko
Marinov, and Danny Dig. Usage, Costs, and
Benefits of Continuous Integration in
Open-Source Projects. In Proceedings of the 31st
International Conference on Automated Software
Engineering, pages 426-437, 2016.
doi:10.1145/2970276.2970358.

Michael Hilton, Nicholas Nelson, Timothy Tunnell,
Darko Marinov, and Danny Dig. Trade-Offs in

Continuous Integration: Assurance, Security, and

33/35

Flexibility. In Proceedings of the 11th Joint Meeting

on Foundations of Software Engineering, pages
197-207, 2017. doi:10.1145/3106237.3106270.

Jez Humble and David Farley. Continuous Delivery:

Reliable Software Releases Through Build, Test, and
Deployment Automation. Pearson Education, 2010.

doi:10.5555/1869904.

Qyegor256

https://doi.org/10.1007/bfb0053579
https://doi.org/10.5555/1407387
https://doi.org/10.1145/255656.255698
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1109/SANER53432.2022.00084
https://doi.org/10.1145/2970276.2970358
https://doi.org/10.1145/3106237.3106270
https://doi.org/10.5555/1869904

Romit Jain, Saket Kumar Singh, and Bharavi Mishra.

A Brief Study on Build Failures in Continuous
Integration: Causation and Effect. In Proceedings
of the Progress in Advanced Computing and
Intelligent Engineering, pages 17-27. Springer,
2018. doi:10.1007/978-981-13-0224-4_2.

Wing Lam, Stefan Winter, Angello Astorga, Victoria
Stodden, and Darko Marinov. Understanding
Reproducibility and Characteristics of Flaky Tests
Through Test Reruns in Java Projects. In
Proceedings of the 31st International Symposium on
Software Reliability Engineering (ISSRE), pages
403-413. IEEE, 2020.
doi:10.1109/issre5003.2020.00045.

Pei Liu, Xiaoyu Sun, Yanjie Zhao, Yonghui Liu, John
Grundy, and Li Li. A First Look at CI/CD
Adoptions in Open-Source Android Apps. In
Proceedings of the 37th International Conference on
Automated Software Engineering, pages 1-6, 2022.
doi:10.1145/3551349.3561341.

John Micco. Flaky Tests at Google and How We
Mitigate Them.

https://testing.googleblog.com/2016/05/
flaky-tests-at-google-and-how-we.html,
may 2016. [Online; accessed 25-02-2024].

John Micco. The State of Continuous Integration
Testing at Google. ICST, 2017.

Owain Parry, Gregory M. Kapfhammer, Michael
Hilton, and Phil McMinn. A Survey of Flaky Tests.
ACM Transactions on Software Engineering and
Methodology, 31(1):1-74, 2021.
doi:10.1145/3476105.

Shanto Rahman and August Shi. FlakeSync:
Automatically Repairing Async Flaky Tests. In
Proceedings of the 46th International Conference on
Software Engineering (ICSE), page 920. IEEE, 2024.

Thomas Rausch, Waldemar Hummer, Philipp Leitner,
and Stefan Schulte. An Empirical Analysis of
Build Failures in the Continuous Integration
Workflows of Java-Based Open-Source Software.
In Proceedings of the 14th International Conference
on Mining Software Repositories, pages 345-355.
[EEE, 2017. d0i:10.1109/msr.2017.54.

34/35

Qyegor256

https://doi.org/10.1007/978-981-13-0224-4_2
https://doi.org/10.1109/issre5003.2020.00045
https://doi.org/10.1145/3551349.3561341
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://testing.googleblog.com/2016/05/flaky-tests-at-google-and-how-we.html
https://doi.org/10.1145/3476105
https://doi.org/10.1109/msr.2017.54

35/35

Bogdan Vasilescu, Yue Yu, Huaimin Wang, Zampetti, Daniele Romano, Philipp Leitner, Andy
Premkumar Devanbu, and Vladimir Filkov. Zaidman, Massimiliano Di Penta, and Sebastiano
Quality and Productivity Outcomes Relating to Panichella. A Tale of CI Build Failures: An Open
Continuous Integration in GitHub. In Proceedings Source and a Financial Organization Perspective.
of the 10th Joint Meeting on Foundations of In Proceedings of the International Conference on
Software Engineering, pages 805-816, 2015. Software Maintenance and Evolution (ICSME),
doi:10.1145/2786805.2786850. pages 183-193. IEEE, 2017.

Carmine Vassallo, Gerald Schermann, Fiorella doi:10.1109/ICSME.2017.67.

Builds Qyegor256

https://doi.org/10.1145/2786805.2786850
https://doi.org/10.1109/ICSME.2017.67

