
Commits Density

Yegor Bugayenko

Lecture #20 out of 24

80 minutes

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.



2/34

Commits Density @yegor256

Marc J. Rochkind

“Where the change was made, that is, to what

source lines, and what the change actually was is

recorded by the nature of the deltas themselves. The

reason for the delta is not recorded automatically; it

must be supplied by the programmer adding the

delta, but it is required. The quality of the reason

(like the quality of the change itself) depends on the

conscientiousness of the programmer.”

— Marc J. Rochkind. The Source Code Control System. IEEE Transactions on
Software Engineering, 31(4):364–370, 1975. doi:10.1109/tse.1975.6312866

https://doi.org/10.1109/tse.1975.6312866


3/34

Commits Density @yegor256

Todd Graves

“By studying effort at the level of individual changes,

we are able to judge the influence of factors whose

contributions are not estimable at a large project

level due to aggregation.”

— Todd L. Graves and Audris Mockus. Inferring Change Effort From
Configuration Management Databases. In Proceedings of the 5th International
Software Metrics Symposium, pages 267–273. IEEE, 1998.
doi:10.1109/metric.1998.731253

https://doi.org/10.1109/metric.1998.731253


4/34

Commits Density @yegor256

“Effort, measured in Average

Technical Head Count Months

(ATHCM), is recorded for each

person every month broken down

by charging numbers... The eleven

developers completed 2794 changes

(Maintenance Requests) in the 45

month period under study.”

Source: Todd L. Graves and Audris Mockus. Inferring

Change Effort From Configuration Management

Databases. In Proceedings of the 5th International
Software Metrics Symposium, pages 267–273. IEEE,

1998. doi:10.1109/metric.1998.731253

https://doi.org/10.1109/metric.1998.731253


5/34

Commits Density @yegor256

David Atkins

“Observation is that the change history of a

software entity (i.e., the version control data about

the modifications to the entity) can be used to

estimate the amount of effort a developer expended

on a particular modification or set of modifications.”

— David Atkins, Thomas Ball, Todd Graves, and Audris Mockus. Using Version
Control Data to Evaluate the Impact of Software Tools. In Proceedings of the
21st International Conference on Software Engineering, pages 324–333, 1999.
doi:10.1145/302405.302649

https://doi.org/10.1145/302405.302649


6/34

Commits Density @yegor256

Audris Mockus

“Our hypothesis is that a textual description field of

a change is essential to understanding why that

change was performed. Also, we expect that

difficulty, size, and interval would vary strongly

across different types of changes.”

— Audris Mockus and Lawrence G. Votta. Identifying Reasons for Software
Changes Using Historic Databases. In Proceedings of the International
Conference on Software Maintenance, pages 120–130. IEEE, 2000.
doi:10.1109/icsm.2000.883028

https://doi.org/10.1109/icsm.2000.883028


7/34

Commits Density @yegor256

Source: Audris Mockus and Lawrence G. Votta. Identifying Reasons for Software Changes Using Historic

Databases. In Proceedings of the International Conference on Software Maintenance, pages 120–130. IEEE, 2000.
doi:10.1109/icsm.2000.883028

https://doi.org/10.1109/icsm.2000.883028


8/34

Commits Density @yegor256

German Daniel

“Developers take care to explain, in each

Modification Request (MR), the reason for the

change (CVS allows developers to add a log message

to every file revision during a CVS commit). The

average log for an MR is 300 characters, with a

minimum length of 1 (only 8 MRs) and 18 000 for

the longest log (which involved the merging of a

branch to the main CVS tree).”

— Daniel M. German. Using Software Trails to Reconstruct the Evolution of
Software. Journal of Software Maintenance and Evolution: Research and Practice,
16(6):367–384, 2004. doi:10.1002/smr.301

https://doi.org/10.1002/smr.301


9/34

Commits Density @yegor256

Ahmed E. Hassan

“The Mining Software Repositories (MSR) field is

maturing thanks to the rich, extensive, and readily

available software repositories... After four

successful years as ICSE’s largest workshop, MSR

became a Working Conference in 2008.”

— Ahmed E. Hassan. The Road Ahead for Mining Software Repositories. In
Proceedings of the Frontiers of Software Maintenance, pages 48–57. IEEE, 2008.
doi:10.1109/fosm.2008.4659248

https://doi.org/10.1109/fosm.2008.4659248


10/34

Commits Density @yegor256

An Overview of MSR Achievements

• Understanding Software Systems “Using the historical sticky
notes on the NetBSD system, a large open source operating

system, many unexpected dependencies could be easily explained

and rationalized.”

• Propagating Changes “Instead of using traditional dependency

graphs to propagate changes, we could make use of the historical

co-changes. The intuition is that entities co-changing frequently in

the past are very likely to co-change in the future.”

• Predicting and Identifying Bugs “Tools can flag bugs by

recognizing deviations in mined patterns for renaming variables

when cloning (i.e., copy-and-paste) code.”

• Understanding Team Dynamics “Mailing lists discussions could

uncover the overall morale of a development team with developers

using more optimistic words when they feel positive about the

progress of the project.”

• Improving the User Experience “Instead of studying the quality

of the source code, they mine data captured by project monitoring

and tracking infrastructures as well as customer support records to

determine the expected quality of a software application.”

• Reusing Code “The techniques locate uses of code such as library

APIs, and attempt to match these uses to the needs of a developer

working on a new piece of code.”

• Automating Empirical Studies “The automation permits the

repetition of studies on a large number of subject and the ability to

verify the generality of many findings in these studies.”

Source: Ahmed E. Hassan. The Road Ahead for Mining Software Repositories. In Proceedings of the Frontiers of
Software Maintenance, pages 48–57. IEEE, 2008. doi:10.1109/fosm.2008.4659248

https://doi.org/10.1109/fosm.2008.4659248


11/34

Commits Density @yegor256

Witold Pedrycz

“Results indicate that for the Eclipse data, process

metrics are more efficient defect predictors than

code metrics... Files with high revision numbers are

by nature defect prone... Files that are part of large

CVS commits are likely to be defect free.”

— Raimund Moser, Witold Pedrycz, and Giancarlo Succi. A Comparative
Analysis of the Efficiency of Change Metrics and Static Code Attributes for
Defect Prediction. In Proceedings of the 30th International Conference on
Software Engineering, pages 181–190, 2008. doi:10.1145/1368088.1368114

https://doi.org/10.1145/1368088.1368114


12/34

Commits Density @yegor256

“Our set of change metrics is

obviously only one possible

proposal for change metrics we can

extract from a CVS repository.”

Source: Raimund Moser, Witold Pedrycz, and

Giancarlo Succi. A Comparative Analysis of the

Efficiency of Change Metrics and Static Code

Attributes for Defect Prediction. In Proceedings of the
30th International Conference on Software Engineering,
pages 181–190, 2008. doi:10.1145/1368088.1368114

https://doi.org/10.1145/1368088.1368114


13/34

Commits Density @yegor256

Abdulkareem Alali

“One observation is that the terms that suggest bug

related changes are associated with fairly

small-sized commits.”

— Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. What’s a Typical
Commit? A Characterization of Open Source Software Repositories. In
Proceedings of the 16th International Conference on Program Comprehension,
pages 182–191. IEEE, 2008. doi:10.1109/icpc.2008.24

https://doi.org/10.1109/icpc.2008.24


14/34

Commits Density @yegor256

Source: Abdulkareem Alali, Huzefa Kagdi, and Jonathan I. Maletic. What’s a Typical Commit? A

Characterization of Open Source Software Repositories. In Proceedings of the 16th International Conference on
Program Comprehension, pages 182–191. IEEE, 2008. doi:10.1109/icpc.2008.24

https://doi.org/10.1109/icpc.2008.24


15/34

Commits Density @yegor256

“For each project, we collected the

log messages and eliminated stop

words using the Lovins stemmer

algorithm... The result is a ranked

list of frequent terms for each

project. Then we cross join those

nine lists and take the top most 50

frequent terms.”

Source: Abdulkareem Alali, Huzefa Kagdi, and

Jonathan I. Maletic. What’s a Typical Commit? A

Characterization of Open Source Software

Repositories. In Proceedings of the 16th International
Conference on Program Comprehension, pages
182–191. IEEE, 2008. doi:10.1109/icpc.2008.24

https://doi.org/10.1109/icpc.2008.24


16/34

Commits Density @yegor256

Abram Hindle

“Large commits were more likely to perfective than

corrective, while small changes were more often

corrective rather than perfective. In a way it makes

sense, correcting errors is surgical, perfecting a

system is much more global in scope.”

— Abram Hindle, Daniel M. German, and Ric Holt. What Do Large Commits
Tell Us? A Taxonomical Study of Large Commits. In Proceedings of the
International Working Conference on Mining Software Repositories, pages 99–108,
2008. doi:10.1145/1370750.1370773

https://doi.org/10.1145/1370750.1370773


17/34

Commits Density @yegor256

“We believe that reading a commit

log and its diff gives an idea of how

easy or difficult it is to maintain a

system. For example, several

features in PostgreSQL required

large commits to be implemented.

This is very subjective, but reliable

methods could be researched and

developed to quantify such effect.”

Source: Abram Hindle, Daniel M. German, and Ric

Holt. What Do Large Commits Tell Us? A

Taxonomical Study of Large Commits. In Proceedings
of the International Working Conference on Mining
Software Repositories, pages 99–108, 2008.
doi:10.1145/1370750.1370773

https://doi.org/10.1145/1370750.1370773


18/34

Commits Density @yegor256



19/34

Commits Density @yegor256

Oliver Arafat

“We suggest distinguishing commit types by their

size, using the following simple heuristic: single

commits of 1 to 100 SLoC, aggregate commits of 101

to 10000 SLoC, and repository refactorings of more

than 10000 SLoC.”

— Oliver Arafat and Dirk Riehle. The Commit Size Distribution of Open Source
Software. In Proceedings of the 42nd Hawaii International Conference on System
Sciences, pages 1–8. IEEE, 2009. doi:10.1109/hicss.2009.421

https://doi.org/10.1109/hicss.2009.421


20/34

Commits Density @yegor256

Marco D’Ambros

“Developers do not always document all the changes

in the commit comment. A common cause is that

writing exhaustive comments is time consuming,

and—being the last step of a coding session—the

necessary time and energy is not always available.

Moreover, for commits with many changes, the

developers might not remember all of the

modifications.”

— Marco D’Ambros, Michele Lanza, and Romain Robbes. Commit 2.0. In
Proceedings of the 1st Workshop on Web 2.0 for Software Engineering, pages
14–19, 2010. doi:10.1145/1809198.1809204

https://doi.org/10.1145/1809198.1809204


21/34

Commits Density @yegor256

Raymond Buse

“We present an automatic technique for

synthesizing succinct human-readable

documentation for arbitrary program differences.

We compare our documentation to 250

human-written log messages from 5 popular open

source projects. Employing a human study, we find

that our generated documentation is suitable for

supplementing or replacing 89% of existing log

messages that directly describe a code change.”

— Raymond P. L. Buse and Westley R. Weimer. Automatically Documenting
Program Changes. In Proceedings of the 25th International Conference on
Automated Software Engineering, pages 33–42, 2010.
doi:10.1145/1858996.1859005

https://doi.org/10.1145/1858996.1859005


22/34

Commits Density @yegor256

Jon Eyolfson

“Commits submitted between midnight and 4 AM

(referred to as late-night commits) are significantly

buggier and commits between 7 AM and noon are

less buggy, implying that developers may want to

double-check their own latenight commits.”

— Jon Eyolfson, Lin Tan, and Patrick Lam. Do Time of Day and Developer
Experience Affect Commit Bugginess? In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages 153–162, 2011.
doi:10.1145/1985441.1985464

https://doi.org/10.1145/1985441.1985464


23/34

Commits Density @yegor256

Robert Dyer

“First, around 14% of all log messages were

completely empty. Second, over two thirds of the

messages contained 1–15 words, which is less than

the average length of a sentence in English. A

normal length sentence in English is 15–20 words

(according to various results in Google) and thus we

see that very few logs (10%) contained descriptive

messages.”

— Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and Tien N. Nguyen. Boa: A
Language and Infrastructure for Analyzing Ultra-Large-Scale Software
Repositories. In Proceedings of the 35th International Conference on Software
Engineering (ICSE), pages 422–431. IEEE, 2013. doi:10.1109/icse.2013.6606588

https://doi.org/10.1109/icse.2013.6606588


24/34

Commits Density @yegor256

Luis Fernando Cortés-Coy

“The results of the user study demonstrate that 84%

of the generated commit messages do not miss

essential information required to understand the

changes, 25% of them are concise, and in 39% of the

cases the generated messages are easy to read and

understand.”

— Luis Fernando Cortés-Coy, Mario Linares-Vásquez, Jairo Aponte, and Denys
Poshyvanyk. On Automatically Generating Commit Messages via
Summarization of Source Code Changes. In Proceedings of the 14th International
Working Conference on Source Code Analysis and Manipulation, pages 275–284.
IEEE, 2014. doi:10.1109/scam.2014.14

https://doi.org/10.1109/scam.2014.14


25/34

Commits Density @yegor256

Shane McIntosh

“JIT models, which aim to predict the commits that

will introduce future defects, are typically trained

using code-based metrics. We add metrics that

estimate the level of detail in commit messages to

JIT models with code-based metrics. We find that

43% and 80% of the JIT models of the studied

systems are significantly improved by adding

metrics that measure commit message volume and

content, respectively.”

— Jacob G. Barnett, Charles K. Gathuru, Luke S. Soldano, and Shane McIntosh.
The Relationship Between Commit Message Detail and Defect Proneness in
Java Projects on Github. In Proceedings of the 13th International Conference on
Mining Software Repositories, pages 496–499, 2016. doi:10.1145/2901739.2903496

https://doi.org/10.1145/2901739.2903496


26/34

Commits Density @yegor256

Eddie Antonio Santos

“Despite some evidence to suggest that the

“unusualness” of a commit message is positively

correlated with build failure, the slope is so gradual

that it is infeasible for an average developer to judge

a commit by simply reading its log message.”

— Eddie Antonio Santos and Abram Hindle. Judging a Commit by Its Cover:
Correlating Commit Message Entropy With Build Status on Travis-CI. In
Proceedings of the 13th Working Conference on Mining Software Repositories
(MSR), pages 504–507, 2016. doi:10.7939/r3-h4d8-ej76

https://doi.org/10.7939/r3-h4d8-ej76


27/34

Commits Density @yegor256

Jeongju Sohn

“Age simply measures how long a given program

element has existed in the code base. We calculate

the age of a given statement as the number of

consecutive versions from the faulty version

backwards to the latest version containing a

modication to the statement.”

— Jeongju Sohn and Shin Yoo. FLUCCS: Using Code and Change Metrics to
Improve Fault Localization. In Proceedings of the 26th International Symposium
on Software Testing and Analysis, pages 273–283, 2017.
doi:10.1145/3092703.3092717

https://doi.org/10.1145/3092703.3092717


28/34

Commits Density @yegor256

Iftekhar Ahmed

“Commit message quality has an impact on

software defect proneness, and the overall quality of

the commit messages decreases over time, while

developers believe they are writing better commit

messages.”

— Jiawei Li and Iftekhar Ahmed. Commit Message Matters: Investigating
Impact and Evolution of Commit Message Quality. In Proceedings of the 45th
International Conference on Software Engineering (ICSE), pages 806–817. IEEE,
2023. doi:10.1109/icse48619.2023.00076

https://doi.org/10.1109/icse48619.2023.00076


29/34

Commits Density @yegor256

Yuxia Zhang

“Although LLMs can take larger diffs as input, their

performance of generating messages leaves much to

be improved. UniXcoder tends to generate short

messages, while ChatGPT can generate more

detailed messages, which are very different from

those written by developers.”

— Yuxia Zhang, Zhiqing Qiu, Klaas-Jan Stol, Wenhui Zhu, Jiaxin Zhu, Yingchen
Tian, and Hui Liu. Automatic Commit Message Generation: A Critical Review
and Directions for Future Work. IEEE Transactions on Software Engineering, 16,
2024. doi:10.1109/tse.2024.3364675

https://doi.org/10.1109/tse.2024.3364675


30/34

Commits Density @yegor256

Pitfalls of Automated Commits Generation

• “Developers indicate that writing the subject of a
commit message is hard, and approximately 37%

of developers also find writing subjects

time-consuming.”

•“The state-of-the-art approaches for automated

commit message generation have limited their

datasets to commits whose diffs have no more

than 100 or 200 tokens. However, only 5% of

commits have a diff length of no more than 100

tokens. The performance of four state-of-the-art

approaches on commits with larger diffs

degrades significantly.”

•“After removing bot-generated and

uninformative commit messages from the

training and testing datasets, the performance of

NNGen, CoRec, and CCRep greatly declines in

comparison to the original evaluations.”

Source: Yuxia Zhang, Zhiqing Qiu, Klaas-Jan Stol, Wenhui Zhu, Jiaxin Zhu, Yingchen Tian, and Hui Liu.

Automatic Commit Message Generation: A Critical Review and Directions for Future Work. IEEE Transactions
on Software Engineering, 16, 2024. doi:10.1109/tse.2024.3364675

https://doi.org/10.1109/tse.2024.3364675


31/34

Commits Density @yegor256

Commits Best Practices (Coders’ Folklore)

• “Commit it as soon as it compiles” —

here

•“Prefer small commits to large

commits.” — here

•“You shouldn’t commit based on a

time basis, but on a feature basis” —

here

•“I tend to commit anytime I take a

break” — here

•“If you have to put the word "and"

or "also" in your summary, you need

to split it up.” — here

•“If you can’t adequately comment a

commit in one line, then it’s already

too large.” — here

•“Files that are generated by build

tools, compilers, or other automated

processes should not typically be

committed.” — here

•“The first line must be maximum 50

characters long, each line in the

description should though wrap at

the 72nd mark.” — here

https://softwareengineering.stackexchange.com/a/74789/20873
https://softwareengineering.stackexchange.com/a/207036/20873
https://softwareengineering.stackexchange.com/a/74893/20873
https://softwareengineering.stackexchange.com/a/74767/20873
https://softwareengineering.stackexchange.com/a/12209/20873
https://softwareengineering.stackexchange.com/a/10944/20873
https://medium.com/@saeid/10-essential-practices-for-better-git-commits-and-why-they-matter-3cfc420bf53e
https://preslav.me/2015/02/21/what-s-with-the-50-72-rule/


32/34

Commits Density @yegor256

References
Abdulkareem Alali, Huzefa Kagdi, and Jonathan I.

Maletic. What’s a Typical Commit? A

Characterization of Open Source Software

Repositories. In Proceedings of the 16th
International Conference on Program
Comprehension, pages 182–191. IEEE, 2008.
doi:10.1109/icpc.2008.24.

Oliver Arafat and Dirk Riehle. The Commit Size

Distribution of Open Source Software. In

Proceedings of the 42nd Hawaii International
Conference on System Sciences, pages 1–8. IEEE,
2009. doi:10.1109/hicss.2009.421.

David Atkins, Thomas Ball, Todd Graves, and Audris

Mockus. Using Version Control Data to Evaluate

the Impact of Software Tools. In Proceedings of
the 21st International Conference on Software
Engineering, pages 324–333, 1999.
doi:10.1145/302405.302649.

Jacob G. Barnett, Charles K. Gathuru, Luke S.

Soldano, and Shane McIntosh. The Relationship

Between Commit Message Detail and Defect

Proneness in Java Projects on Github. In

Proceedings of the 13th International Conference on
Mining Software Repositories, pages 496–499, 2016.
doi:10.1145/2901739.2903496.

Raymond P. L. Buse and Westley R. Weimer.

Automatically Documenting Program Changes. In

Proceedings of the 25th International Conference on
Automated Software Engineering, pages 33–42,
2010. doi:10.1145/1858996.1859005.

Luis Fernando Cortés-Coy, Mario Linares-Vásquez,

Jairo Aponte, and Denys Poshyvanyk. On

Automatically Generating Commit Messages via

Summarization of Source Code Changes. In

Proceedings of the 14th International Working
Conference on Source Code Analysis and
Manipulation, pages 275–284. IEEE, 2014.
doi:10.1109/scam.2014.14.

Marco D’Ambros, Michele Lanza, and Romain

Robbes. Commit 2.0. In Proceedings of the 1st
Workshop on Web 2.0 for Software Engineering,

https://doi.org/10.1109/icpc.2008.24
https://doi.org/10.1109/hicss.2009.421
https://doi.org/10.1145/302405.302649
https://doi.org/10.1145/2901739.2903496
https://doi.org/10.1145/1858996.1859005
https://doi.org/10.1109/scam.2014.14


33/34

Commits Density @yegor256

pages 14–19, 2010. doi:10.1145/1809198.1809204.

Robert Dyer, Hoan Anh Nguyen, Hridesh Rajan, and

Tien N. Nguyen. Boa: A Language and

Infrastructure for Analyzing Ultra-Large-Scale

Software Repositories. In Proceedings of the 35th
International Conference on Software Engineering
(ICSE), pages 422–431. IEEE, 2013.
doi:10.1109/icse.2013.6606588.

Jon Eyolfson, Lin Tan, and Patrick Lam. Do Time of

Day and Developer Experience Affect Commit

Bugginess? In Proceedings of the 8th Working
Conference on Mining Software Repositories, pages
153–162, 2011. doi:10.1145/1985441.1985464.

Daniel M. German. Using Software Trails to

Reconstruct the Evolution of Software. Journal of
Software Maintenance and Evolution: Research and
Practice, 16(6):367–384, 2004. doi:10.1002/smr.301.

Todd L. Graves and Audris Mockus. Inferring Change

Effort From Configuration Management

Databases. In Proceedings of the 5th International
Software Metrics Symposium, pages 267–273. IEEE,

1998. doi:10.1109/metric.1998.731253.

Ahmed E. Hassan. The Road Ahead for Mining

Software Repositories. In Proceedings of the
Frontiers of Software Maintenance, pages 48–57.
IEEE, 2008. doi:10.1109/fosm.2008.4659248.

Abram Hindle, Daniel M. German, and Ric Holt.

What Do Large Commits Tell Us? A Taxonomical

Study of Large Commits. In Proceedings of the
International Working Conference on Mining
Software Repositories, pages 99–108, 2008.
doi:10.1145/1370750.1370773.

Jiawei Li and Iftekhar Ahmed. Commit Message

Matters: Investigating Impact and Evolution of

Commit MessageQuality. In Proceedings of the
45th International Conference on Software
Engineering (ICSE), pages 806–817. IEEE, 2023.
doi:10.1109/icse48619.2023.00076.

Audris Mockus and Lawrence G. Votta. Identifying

Reasons for Software Changes Using Historic

Databases. In Proceedings of the International
Conference on Software Maintenance, pages
120–130. IEEE, 2000.

doi:10.1109/icsm.2000.883028.

https://doi.org/10.1145/1809198.1809204
https://doi.org/10.1109/icse.2013.6606588
https://doi.org/10.1145/1985441.1985464
https://doi.org/10.1002/smr.301
https://doi.org/10.1109/metric.1998.731253
https://doi.org/10.1109/fosm.2008.4659248
https://doi.org/10.1145/1370750.1370773
https://doi.org/10.1109/icse48619.2023.00076
https://doi.org/10.1109/icsm.2000.883028


34/34

Commits Density @yegor256

Raimund Moser, Witold Pedrycz, and Giancarlo

Succi. A Comparative Analysis of the Efficiency of

Change Metrics and Static Code Attributes for

Defect Prediction. In Proceedings of the 30th
International Conference on Software Engineering,
pages 181–190, 2008.

doi:10.1145/1368088.1368114.

Marc J. Rochkind. The Source Code Control System.

IEEE Transactions on Software Engineering, 31(4):
364–370, 1975. doi:10.1109/tse.1975.6312866.

Eddie Antonio Santos and Abram Hindle. Judging a

Commit by Its Cover: Correlating Commit

Message Entropy With Build Status on Travis-CI.

In Proceedings of the 13th Working Conference on

Mining Software Repositories (MSR), pages
504–507, 2016. doi:10.7939/r3-h4d8-ej76.

Jeongju Sohn and Shin Yoo. FLUCCS: Using Code

and Change Metrics to Improve Fault Localization.

In Proceedings of the 26th International Symposium
on Software Testing and Analysis, pages 273–283,
2017. doi:10.1145/3092703.3092717.

Yuxia Zhang, Zhiqing Qiu, Klaas-Jan Stol, Wenhui

Zhu, Jiaxin Zhu, Yingchen Tian, and Hui Liu.

Automatic Commit Message Generation: A

Critical Review and Directions for Future Work.

IEEE Transactions on Software Engineering, 16,
2024. doi:10.1109/tse.2024.3364675.

https://doi.org/10.1145/1368088.1368114
https://doi.org/10.1109/tse.1975.6312866
https://doi.org/10.7939/r3-h4d8-ej76
https://doi.org/10.1145/3092703.3092717
https://doi.org/10.1109/tse.2024.3364675

