
Comments Density

Yegor Bugayenko

Lecture #19 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=4_SNhBeyato


2/31

Comments Density @yegor256

Brian Kernighan

“The best documentation for a computer program is

a clean structure. It also helps if the code is well

formatted, with good mnemonic identifiers, labels,

and a smattering of enlightening comments.

Flowcharts and program descriptions are of

secondary importance; the only reliable

documentation of a computer program is the code

itself.”

— Brian W. Kernighan and Phillip James Plauger. The Elements of Programming
Style. McGraw-Hill, Inc, 1974. doi:10.5555/601121

https://doi.org/10.5555/601121


3/31

Comments Density @yegor256

“Comments which precede a group

of statements, and which describe

them in terms of operations in

another domain, will be

particularly helpful. The role of

comments is to bridge between

knowledge domains.”

Source: Ruven Brooks. Using a Behavioral Theory of

Program Comprehension in Software Engineering. In

Proceedings of the 3rd International Conference on
Software Engineering, pages 196–201, 1978.
doi:10.5555/800099.803210

https://doi.org/10.5555/800099.803210


4/31

Comments Density @yegor256

Hubert E. Dunsmore

“An experiment was conducted to investigate how

comments are related to programmers’ ability to

understand programs. Those programmers whose

programs contained comments were able to answer

more questions than those without comments.”

— Scott N. Woodfield, Hubert E. Dunsmore, and Vincent Y. Shen. The Effect of
Modularization and Comments on Program Comprehension. In Proceedings of
the 5th International Conference on Software Engineering, pages 215–223, 1981.
doi:10.5555/800078.802534

https://doi.org/10.5555/800078.802534


5/31

Comments Density @yegor256

“[The degree of] intramodule commenting is the

number of lines with comments divided by the total

number of lines in the module, averaged over all

modules.”

— Paul Oman and Jack Hagemeister. Metrics for Assessing a Software System’s
Maintainability. In Proceedings of the International Conference on Software
Maintenance, pages 337–338. IEEE, 1992. doi:10.1109/icsm.1992.242525

https://doi.org/10.1109/icsm.1992.242525


6/31

Comments Density @yegor256

David Parnas

“Documentation that seems clear and adequate to

its authors is often about as clear as mud to the

programmer who must maintain the code six

months or six years later.”

— David Lorge Parnas. Software Aging. In Proceedings of the 16th International
Conference on Software Engineering, pages 279–287. IEEE, 1994.
doi:10.1109/icse.1994.296790

https://doi.org/10.1109/icse.1994.296790


7/31

Comments Density @yegor256

Comments Affect Maintainability

Source: Manuel J. Barranco Garcia and Juan Carlos Granja Alvarez. Maintainability as a Key Factor in

Maintenance Productivity: A Case Study. In Proceedings of the International Conference on Software
Maintenance, pages 87–93. IEEE, 1996. doi:10.1109/icsm.1996.564992

https://doi.org/10.1109/icsm.1996.564992


8/31

Comments Density @yegor256

Martin Fowler

“Don’t worry, we aren’t saying that people shouldn’t

write comments. In our olfactory analogy,

comments aren’t a bad smell; indeed they are a

sweet smell. The reason we mention comments here

is that comments often are used as a deodorant. It’s

surprising how often you look at thickly commented

code and notice that the comments are there

because the code is bad.”

— Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999. doi:10.5555/311424

https://doi.org/10.5555/311424


9/31

Comments Density @yegor256

Andy Hunt

“Programmers are taught: good code has lots of

comments. Unfortunately, they are never taught

why code needs comments: bad code requires lots of

comments. The DRY principle tells us to keep the

low-level knowledge in the code, where it belongs,

and reserve the comments for other, high-level

explanations. Otherwise, we’re duplicating

knowledge, and every change means changing both

the code and the comments. The comments will

inevitably become out of date, and untrustworthy

comments are worse than no comments at all.”

— Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From
Journeyman to Master. Pearson Education, 1999. doi:10.5555/320326

https://doi.org/10.5555/320326


10/31

Comments Density @yegor256

Eriko Nurvitadhi

“The results indicated that method comments do

increase low-level program understanding, while

class comments did not increase high-level

understanding. This raises questions about the role

of class comments in Object-Oriented programs...”

— Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook. Do Class Comments
Aid Java Program Understanding? In Proceedings of the 33rd Annual Frontiers in
Education, volume 1, pages 130–131. IEEE, 2003. doi:10.1109/fie.2003.1263332

https://doi.org/10.1109/fie.2003.1263332


11/31

Comments Density @yegor256

Steve McConnell

“The main contributor to code-level documentation

isn’t comments, but good programming style...

Comments are easier to write poorly than well, and

commenting can be more damaging than helpful.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143


12/31

Comments Density @yegor256

Beat Fluri

“Code and comments rarely co-evolve: despite its

growth rate, newly added code barely is commented.

Also, 97% of comment changes are done in the same

revision as the associated source code change.”

— Beat Fluri, Michael Wursch, and Harald C. Gall. Do Code and Comments
Co-Evolve? On the Relation Between Source Code and Comment Changes. In
Proceedings of the 14th Working Conference on Reverse Engineering, pages 70–79.
IEEE, 2007. doi:10.1109/wcre.2007.21

https://doi.org/10.1109/wcre.2007.21


13/31

Comments Density @yegor256

Robert C. Martin

“Indeed, comments are, at best, a necessary evil. If

our programming languages were expressive enough,

or if we had the talent to subtly wield those

languages to express our intent, we would not need

comments very much—perhaps not at all.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398


14/31

Comments Density @yegor256

Oliver Arafat

“Comment density is the percentage of comment

lines in a given source code base, that is, comment

lines divided by total lines of code. Comment density

is assumed to be a good predictor of maintainability

and hence survival of a software project. In this

study we focus on one particular code metric, the

comment density, and assess it across 5,229 active

open source projects, representing about 30% of all

active open source projects.”

— Oliver Arafat and Dirk Riehle. The Comment Density of Open Source
Software Code. In Proceedings of the 31st International Conference on Software
Engineering, Companion Volume, pages 195–198. IEEE, 2009.
doi:10.1109/icse-companion.2009.5070980

https://doi.org/10.1109/icse-companion.2009.5070980


15/31

Comments Density @yegor256

Project Size vs. Comments Density

Source: Oliver Arafat and Dirk Riehle. The Comment Density of Open Source Software Code. In Proceedings of
the 31st International Conference on Software Engineering, Companion Volume, pages 195–198. IEEE, 2009.
doi:10.1109/icse-companion.2009.5070980

https://doi.org/10.1109/icse-companion.2009.5070980


16/31

Comments Density @yegor256

Houari Sahraoui

“We defined a taxonomy of comments to guide this

analysis. Our study showed that programmers

comment some constructs more often than others.

In the majority of cases, comments are intended to

explain the code that follows them. The second more

widely used category of comments are dedicated to

communication between programmers and personal

notes (we call them working comments).”

— Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. How Good Is Your
Comment? A Study of Comments in Java Programs. In Proceedings of the
International Symposium on Empirical Software Engineering and Measurement,
pages 137–146. IEEE, 2011. doi:10.1109/esem.2011.22

https://doi.org/10.1109/esem.2011.22


17/31

Comments Density @yegor256

Types of Comments

Source: Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. How Good Is Your Comment? A Study of

Comments in Java Programs. In Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, pages 137–146. IEEE, 2011. doi:10.1109/esem.2011.22

https://doi.org/10.1109/esem.2011.22


18/31

Comments Density @yegor256

Frequency of Comments

Source: Dorsaf Haouari, Houari Sahraoui, and Philippe Langlais. How Good Is Your Comment? A Study of

Comments in Java Programs. In Proceedings of the International Symposium on Empirical Software Engineering
and Measurement, pages 137–146. IEEE, 2011. doi:10.1109/esem.2011.22

https://doi.org/10.1109/esem.2011.22


19/31

Comments Density @yegor256

Tobias Röhm

“Source code is more trusted than documentation:

21 participants reported that they get their main

information from source code and inline comments

whereas only four stated that documentation is their

main source of information.”

— Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and Walid Maalej. How Do
Professional Developers Comprehend Software? In Proceedings of the 34th
International Conference on Software Engineering (ICSE), pages 255–265. IEEE,
2012. doi:10.1109/icse.2012.6227188

https://doi.org/10.1109/icse.2012.6227188


20/31

Comments Density @yegor256

Luca Pascarella

“Code comments contain valuable information to

support software development, especially during

code reading and code maintenance. Nevertheless,

not all the comments are the same.”

— Luca Pascarella, Magiel Bruntink, and Alberto Bacchelli. Classifying Code
Comments in Java Software Systems. Empirical Software Engineering, 24(3):
1499–1537, 2019. doi:10.1007/s10664-019-09694-w

https://doi.org/10.1007/s10664-019-09694-w


21/31

Comments Density @yegor256

Taxonomy of Comment Types

Source: Luca Pascarella, Magiel Bruntink, and Alberto Bacchelli. Classifying Code Comments in Java Software

Systems. Empirical Software Engineering, 24(3):1499–1537, 2019. doi:10.1007/s10664-019-09694-w

https://doi.org/10.1007/s10664-019-09694-w


22/31

Comments Density @yegor256

Hao He

“We analyzed the comment density of 150 projects

in 5 different programming languages. We have

found that there are noticeable differences in

comment density, which may be related to the

programming language used in the project and the

purpose of the project.”

— Hao He. Understanding Source Code Comments at Large-Scale. In
Proceedings of the 27th Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages
1217–1219, 2019. doi:10.1145/3338906.3342494

https://doi.org/10.1145/3338906.3342494


23/31

Comments Density @yegor256

Comments Density by Language

Source: Hao He. Understanding Source Code Comments at Large-Scale. In Proceedings of the 27th Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations of Software Engineering, pages
1217–1219, 2019. doi:10.1145/3338906.3342494

https://doi.org/10.1145/3338906.3342494


24/31

Comments Density @yegor256

Sean Stapleton

“Participants reviewed Java methods and summaries

and answered established program comprehension

questions. In addition, participants completed

coding tasks given summaries as specifications. We

found that participants performed significantly

better using human-written summaries versus

machine-generated summaries.”

— Sean Stapleton, Yashmeet Gambhir, Alexander LeClair, Zachary Eberhart,
Westley Weimer, Kevin Leach, and Yu Huang. A Human Study of
Comprehension and Code Summarization. In Proceedings of the 28th
International Conference on Program Comprehension, pages 2–13, 2020.
doi:10.1145/3387904.3389258

https://doi.org/10.1145/3387904.3389258


25/31

Comments Density @yegor256

Xing Hu

“Code comment generation is a popular area of

research in recent years. In this work, we

interviewed 16 professionals and surveyed 720

practitioners on commenting practices and issues

they face and their expectations on code comment

generation tools. Practitioners are enthusiastic

about research in comment generation techniques

and expect tools to generate comments for different

granularity levels (especially class and method

levels).”

— Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan Chen, and Thomas
Zimmermann. Practitioners’ Expectations on Automated Code Comment
Generation. In Proceedings of the 44th International Conference on Software
Engineering, pages 1693–1705, 2022. doi:10.1145/3510003.3510152

https://doi.org/10.1145/3510003.3510152


26/31

Comments Density @yegor256

Nine Rules of Good Code Comments

1. Comments should not duplicate the code.

2. Good comments do not excuse unclear code.

3. If you can’t write a clear comment, there may be

a problem with the code.

4. Comments should dispel confusion, not cause it.

5. Explain unidiomatic code in comments.

6. Provide links to the original source of copied

code.

7. Include links to external references where they

will be most helpful.

8. Add comments when fixing bugs.

9. Use comments to mark incomplete

implementations.

Source: Ellen Spertus. Best Practices for Writing

Code Comments.

https://stackoverflow.blog/2021/12/23/best-
practices-for-writing-code-comments/, 2021

https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/


27/31

Comments Density @yegor256

Some Open Source Repositories (9 Feb 2024)

Github Repository Stack Files Comments LoC Com/LoC

nodejs JS & C++ 32559 1003K 8381K 0.12
pytorch Python 11562 414K 2527K 0.16
moby (a.k.a. Docker) Go 8389 272K 1685K 0.16
flutter Dart 5517 244K 1353K 0.18
spring-framework Java 9883 400K 880K 0.45
guava Java 1984 131K 479K 0.27
curl C 2014 63K 314K 0.20

https://github.com/nodejs/node
https://github.com/pytorch/pytorch
https://github.com/moby/moby
https://github.com/flutter/flutter
https://github.com/spring-projects/spring-framework
https://github.com/google/guava
https://github.com/curl/curl


28/31

Comments Density @yegor256

My Own Statistics (9 Feb 2024)

Github Repository Stack Comments LoC Com/LoC

zerocracy/farm Java 34380 58330 0.59
objectionary/eo Java 23383 49151 0.48
yegor256/cactoos Java 25857 33826 0.76
yegor256/takes Java 21393 26769 0.80
zold-io/zold Ruby 4306 11807 0.36
yegor256/tacit CSS 259 1110 0.23

All repositories are open source.

https://github.com/zerocracy/farm
https://github.com/objectionary/eo
https://github.com/yegor256/cactoos
https://github.com/yegor256/takes
https://github.com/zold-io/zold
https://github.com/yegor256/tacit


29/31

Comments Density @yegor256

References
Oliver Arafat and Dirk Riehle. The Comment Density

of Open Source Software Code. In Proceedings of
the 31st International Conference on Software
Engineering, Companion Volume, pages 195–198.
IEEE, 2009.

doi:10.1109/icse-companion.2009.5070980.

Manuel J. Barranco Garcia and Juan Carlos

Granja Alvarez. Maintainability as a Key Factor in

Maintenance Productivity: A Case Study. In

Proceedings of the International Conference on
Software Maintenance, pages 87–93. IEEE, 1996.
doi:10.1109/icsm.1996.564992.

Ruven Brooks. Using a Behavioral Theory of Program

Comprehension in Software Engineering. In

Proceedings of the 3rd International Conference on
Software Engineering, pages 196–201, 1978.
doi:10.5555/800099.803210.

Beat Fluri, Michael Wursch, and Harald C. Gall. Do

Code and Comments Co-Evolve? On the Relation

Between Source Code and Comment Changes. In

Proceedings of the 14th Working Conference on
Reverse Engineering, pages 70–79. IEEE, 2007.
doi:10.1109/wcre.2007.21.

Martin Fowler, Kent Beck, John Brant, William

Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley

Professional, 1999. doi:10.5555/311424.

Dorsaf Haouari, Houari Sahraoui, and Philippe

Langlais. How Good Is Your Comment? A Study

of Comments in Java Programs. In Proceedings of
the International Symposium on Empirical Software
Engineering and Measurement, pages 137–146.
IEEE, 2011. doi:10.1109/esem.2011.22.

Hao He. Understanding Source Code Comments at

Large-Scale. In Proceedings of the 27th Joint
Meeting on European Software Engineering
Conference and Symposium on the Foundations of
Software Engineering, pages 1217–1219, 2019.
doi:10.1145/3338906.3342494.

Xing Hu, Xin Xia, David Lo, Zhiyuan Wan, Qiuyuan

Chen, and Thomas Zimmermann. Practitioners’

https://doi.org/10.1109/icse-companion.2009.5070980
https://doi.org/10.1109/icsm.1996.564992
https://doi.org/10.5555/800099.803210
https://doi.org/10.1109/wcre.2007.21
https://doi.org/10.5555/311424
https://doi.org/10.1109/esem.2011.22
https://doi.org/10.1145/3338906.3342494


30/31

Comments Density @yegor256

Expectations on Automated Code Comment

Generation. In Proceedings of the 44th
International Conference on Software Engineering,
pages 1693–1705, 2022.

doi:10.1145/3510003.3510152.

Andrew Hunt and Dave Thomas. The Pragmatic
Programmer: From Journeyman to Master. Pearson
Education, 1999. doi:10.5555/320326.

Brian W. Kernighan and Phillip James Plauger. The
Elements of Programming Style. McGraw-Hill, Inc,

1974. doi:10.5555/601121.

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson Education, 2008.

doi:10.5555/1388398.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

Eriko Nurvitadhi, Wing Wah Leung, and Curtis Cook.

Do Class Comments Aid Java Program

Understanding? In Proceedings of the 33rd Annual
Frontiers in Education, volume 1, pages 130–131.

IEEE, 2003. doi:10.1109/fie.2003.1263332.

Paul Oman and Jack Hagemeister. Metrics for

Assessing a Software System’s Maintainability. In

Proceedings of the International Conference on
Software Maintenance, pages 337–338. IEEE, 1992.
doi:10.1109/icsm.1992.242525.

David Lorge Parnas. Software Aging. In Proceedings
of the 16th International Conference on Software
Engineering, pages 279–287. IEEE, 1994.
doi:10.1109/icse.1994.296790.

Luca Pascarella, Magiel Bruntink, and Alberto

Bacchelli. Classifying Code Comments in Java

Software Systems. Empirical Software Engineering,
24(3):1499–1537, 2019.

doi:10.1007/s10664-019-09694-w.

Tobias Roehm, Rebecca Tiarks, Rainer Koschke, and

Walid Maalej. How Do Professional Developers

Comprehend Software? In Proceedings of the 34th
International Conference on Software Engineering
(ICSE), pages 255–265. IEEE, 2012.
doi:10.1109/icse.2012.6227188.

Ellen Spertus. Best Practices for Writing Code

Comments. https:

https://doi.org/10.1145/3510003.3510152
https://doi.org/10.5555/320326
https://doi.org/10.5555/601121
https://doi.org/10.5555/1388398
https://doi.org/10.5555/1096143
https://doi.org/10.1109/fie.2003.1263332
https://doi.org/10.1109/icsm.1992.242525
https://doi.org/10.1109/icse.1994.296790
https://doi.org/10.1007/s10664-019-09694-w
https://doi.org/10.1109/icse.2012.6227188
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/


31/31

Comments Density @yegor256

//stackoverflow.blog/2021/12/23/best-
practices-for-writing-code-comments/,
2021.

Sean Stapleton, Yashmeet Gambhir, Alexander

LeClair, Zachary Eberhart, Westley Weimer, Kevin

Leach, and Yu Huang. A Human Study of

Comprehension and Code Summarization. In

Proceedings of the 28th International Conference on

Program Comprehension, pages 2–13, 2020.
doi:10.1145/3387904.3389258.

Scott N. Woodfield, Hubert E. Dunsmore, and

Vincent Y. Shen. The Effect of Modularization and

Comments on Program Comprehension. In

Proceedings of the 5th International Conference on
Software Engineering, pages 215–223, 1981.
doi:10.5555/800078.802534.

https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://stackoverflow.blog/2021/12/23/best-practices-for-writing-code-comments/
https://doi.org/10.1145/3387904.3389258
https://doi.org/10.5555/800078.802534

