
Defects Density

Yegor Bugayenko

Lecture #18 out of 24

80 minutes

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.



2/28

Defects Density @yegor256

Michael Fagan

“Feedback of results from inspections must be

counted for the programmer’s use and benefit: they

should not under any circumstances be used for

programmer performance appraisal.”

— Michael Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 38(3):258–287, 1999. doi:10.1147/sj.382.0258

https://doi.org/10.1147/sj.382.0258


3/28

Defects Density @yegor256

Source: Michael Fagan. Design and Code Inspections to Reduce Errors in Program Development. IBM Systems
Journal, 38(3):258–287, 1999. doi:10.1147/sj.382.0258

https://doi.org/10.1147/sj.382.0258


4/28

Defects Density @yegor256

“One surprising result was that

module size did not account for

error proneness. In fact, it was

quite the contrary—the larger the

module, the less error prone it was.

This was true even though the

larger modules were more

complex.”

Source: Victor R. Basili and Barry T. Perricone.

Software Errors and Complexity: An Empirical

Investigation. Communications of the ACM, 27(1):

42–52, 1984. doi:10.1145/69605.2085

https://doi.org/10.1145/69605.2085


5/28

Defects Density @yegor256

“A defect is a product anomaly. Examples include

such things as 1) omissions and imperfections found

during early life cycle phases and 2) faults contained

in software sufficiently mature for test or operation.”

— IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable Software, 1989



6/28

Defects Density @yegor256

Source: IEEE Standards Board. IEEE Std 982.2-1988:

Guide for the Use of IEEE Standard Dictionary of

Measures to Produce Reliable Software, 1989

“This measure has a degree of

indeterminism. For example, a low

value may indicate either a good

process and a good product or it

may indicate a bad process. If the

value is low compared to similar

past projects, the inspection

process should be examined. If the

inspection process is found to be

adequate, it should then be

concluded that the development

process has resulted in a relatively

defect-free product.”



7/28

Defects Density @yegor256

Source: IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE Standard Dictionary of Measures

to Produce Reliable Software, 1989



8/28

Defects Density @yegor256

39 Measures for Reliable Software

1. Fault Density

2. Defect Density

3. Cumulative Failure Profile

4. Fault-Days Number

5. Functional or Modular Test Coverage

6. Cause and Effect Graphing

7. Requirements Traceability

8. Defect Indices

9. Error Distribution(s)

10. Software Maturity Index

11. Manhours per Major Defect Detected

12. Number of Conflicting Requirements

13. Number of Entries and Exits per Module

14. Software Science Measures

15. Graph-Theoretic Complexity for Arch.

16. Cyclomatic Complexity

17. Minimal Unit Test Case Determination

18. Run Reliability

19. Design Structure

20. Mean Time to Discover the Next K Faults

21. Software Purity Level

22. Estimated Num. of Faults Remaining

23. Requirements Compliance

24. Test Coverage

25. Data or Information Flow Complexity

26. Reliability Growth Function

27. Residual Fault Count

28. Failure Analysis Using Elapsed Time

29. Testing Sufficiency

30. Mean Time to Failure

31. Failure Rate

32. Software Docmtn and Source Listings

33. RELY-Required Software Reliability

34. Software Release Readiness

35. Completeness

36. Test Accuracy

37. System Performance Reliability

38. Independent Process Reliability

39. Combined H&S Operational Availability

Source: IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE Standard Dictionary of Measures

to Produce Reliable Software, 1989



9/28

Defects Density @yegor256

Harlan D. Mills

“While our experience in applying statistical

quality-control techniques to software development

is limited, initial experience indicates that five fixes

per thousand lines of code can be tolerated without

invalidating the application of statistics to estimate

MTTF. This failure rate is low compared to normal

development practices, where 20 to 60 fixes per

thousand lines of code is not atypical.”

— Richard H. Cobb and Harlan D. Mills. Engineering Software Under Statistical
Quality Control. IEEE Software, 7(6):45–54, 1990. doi:10.1109/52.60601

https://doi.org/10.1109/52.60601


10/28

Defects Density @yegor256

Joseph Sherif

“The analysis showed a significantly higher density

of defects during requirements inspections. It was

also observed, that the defect densities found

decreased exponentialy as the mork products

approached the coding phase.”

— John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis of Defect
Densities Found During Software Inspections. Journal of Systems and Software,
17(2):111–117, 1992. doi:10.1016/0164-1212(92)90089-3

https://doi.org/10.1016/0164-1212(92)90089-3


11/28

Defects Density @yegor256

Victor R. Basili

“Five out of the six object-oriented metrics presented

by Chidamber and Kemerer [1994] appear to be

useful to predict class fault-proneness during the

high- and low-level design phases of the life-cycle.”

— Victor R. Basili, Lionel C. Briand, and Walcélio L. Melo. A Validation of
Object-Oriented Design Metrics as Quality Indicators. IEEE Transactions on
Software Engineering, 22(10):751–761, 1996. doi:10.1109/32.544352

https://doi.org/10.1109/32.544352


12/28

Defects Density @yegor256

Norman Fenton

“Our critical review of state-of-the-art of models for

predicting software defects has shown that many

methodological and theoretical mistakes have been

made... We recommend holistic models for software

defect prediction, using Bayesian Belief Networks,

as alternative approaches to the single-issue models

used at present.”

— Norman E. Fenton and Martin Neil. A Critique of Software Defect Prediction
Models. IEEE Transactions on Software Engineering, 25(5):675–689, 1999.
doi:10.1109/32.815326

https://doi.org/10.1109/32.815326


13/28

Defects Density @yegor256

“This means we should be very

wary of attempts to equate fault

densities with failure rates, as

proposed for example by Jones

[1996]. Although highly attractive

in principle, such a model does not

stand up to empirical validation.”

Source: Norman E. Fenton and Martin Neil. A

Critique of Software Defect Prediction Models. IEEE
Transactions on Software Engineering, 25(5):675–689,
1999. doi:10.1109/32.815326

https://doi.org/10.1109/32.815326


14/28

Defects Density @yegor256

“We already see defect density

defined in terms of defects per

function point, and empirical

studies are emerging that seem

likely to be the basis for predictive

models. For example, Jones [1991]

reports the following

bench-marking study, reportedly

based on large amounts of data

from different commercial sources.”

Source: Norman E. Fenton and Martin Neil. A

Critique of Software Defect Prediction Models. IEEE
Transactions on Software Engineering, 25(5):675–689,
1999. doi:10.1109/32.815326

https://doi.org/10.1109/32.815326


15/28

Defects Density @yegor256

Steve McConnell

“Industry average experience is about 1-25 errors per

1000 lines of code for delivered software. Cases that

have one-tenth as many errors as this are rare; cases

that have 10 times more tend not to be reported.

(They probably aren’t ever completed!) Microsoft

experiences about 10–20 defects per 1000 lines of

code during in-house testing and 0.5 defects per

1000 lines of code in released product.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143


16/28

Defects Density @yegor256

Parastoo Mohagheghi

“The analysis showed that reused components have

lower defect-density than non-reused ones. Reused

components have more defects with highest severity

than the total distribution, but less defects after

delivery.”

— Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. An
Empirical Study of Software Reuse vs. Defect-Density and Stability. In
Proceedings of the 26th International Conference on Software Engineering, pages
282–291. IEEE, 2004. doi:10.1109/icse.2004.1317450

https://doi.org/10.1109/icse.2004.1317450


17/28

Defects Density @yegor256

Nachiappan Nagappan

“A case study performed on Windows Server 2003

indicates the validity of the relative code churn

measures as early indicators of system defect

density. Our code churn metric suite is able to

discriminate between fault and not fault-prone

binaries with an accuracy of 89%.”

— Nachiappan Nagappan and Thomas Ball. Use of Relative Code Churn
Measures to Predict System Defect Density. In Proceedings of the 27th
International Conference on Software Engineering, pages 284–292, 2005b.
doi:10.1145/1062455.1062514

https://doi.org/10.1145/1062455.1062514


18/28

Defects Density @yegor256

Thomas Ball

“Our results show that the static analysis defect

density is correlated at statistically significant levels

to the pre-release defect density determined by

various testing activities. Further, the static analysis

defect density can be used to predict the pre-release

defect density with a high degree of sensitivity.”

— Nachiappan Nagappan and Thomas Ball. Static Analysis Tools as Early
Indicators of Pre-Release Defect Density. In Proceedings of the 27th International
Conference on Software Engineering, pages 580–586, 2005a.
doi:10.1145/1062455.1062558

https://doi.org/10.1145/1062455.1062558


19/28

Defects Density @yegor256

A Güneş Koru

“We studied four large-scale object-oriented

products, Mozilla, Cn3d, JBoss, and Eclipse. We

observed that defect proneness increased as class

size increased, but at a slower rate; smaller classes

were proportionally more problematic than larger

classes.”

— A. Güneş Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. An
Investigation into the Functional Form of the Size-Defect Relationship for
Software Modules. IEEE Transactions on Software Engineering, 35(2):293–304,
2008. doi:10.1109/tse.2008.90

https://doi.org/10.1109/tse.2008.90


20/28

Defects Density @yegor256

Kazuhiro Yamashita

“Although we found some support for findings in

recent literature that smaller files have higher

defects density, we found further evidence that very

large or complex files have lower defect densities

and in some cases even lower defect proneness. Our

findings have immediate practical implications: the

redistribution of Java code into smaller and less

complex files may be counterproductive.”

— Kazuhiro Yamashita, Changyun Huang, Meiyappan Nagappan, Yasutaka
Kamei, Audris Mockus, Ahmed E. Hassan, and Naoyasu Ubayashi. Thresholds
for Size and Complexity Metrics: A Case Study From the Perspective of Defect
Density. In Proceedings of the International Conference on Software Quality,
Reliability and Security (QRS), pages 191–201. IEEE, 2016.
doi:10.1109/qrs.2016.31

https://doi.org/10.1109/qrs.2016.31


21/28

Defects Density @yegor256

100+ Metrics that Predict Faults

1. AHF Attribute

Hiding Factor

2. AIF Attribute

Inheritance Factor

3. COF Coupling Factor

4. MHF Method Hiding

Factor

5. MIFMethod

Interface Factor

6. POF Polymorphism

Factor

7. SCC Similarity-based

Class Cohesion

8. ANA Average

Number of Ancestors

9. CAM Cohesion

Among Methods

10. CIS Class Interface

Size

11. DAM Data Access

Metric

12. DCC Direct Class

Coupling

13. DSC Design size in

classes

14. MFA Measure of

Functional

Abstraction

15. MOAMeasure of

Aggregation

16. NOH Number of

hierarchies

17. NOM Number of

Methods

18. NOP Number of

polymorphic

methods

19. LCC Loose class

cohesion

20. TCC Tight class

cohesion

21. ACAIC
22. ACMIC
23. AMMIC
24. Coh A variation on

LCOM5

25. DCAEC
26. DCMEC
27. DMMEC
28. FCAEC
29. FCMEC
30. FMMEC
31. IFCAIC
32. IFCMIC
33. IFMMIC
34. OCAEC
35. OCAIC
36. OCMEC
37. OCMIC

38. OMMEC
39. OMMIC
40. ATTRIB Attributes

41. DELS Deletes

42. EVNT Events

43. READS Reads

44. RWD
Read/write/deletes

45. STATES States

46. WRITESWrites

47. CBO Coupling

between object

classes

48. DIT Depth of

inheritance tree

49. LCOM Lack of

cohesion in methods

50. LCOM2 Lack of

cohesion in methods

51. NOC Number of

children

52. NTM Number of

trivial methods

53. RFC Response for a

class

54. WMC Weighted

methods per class

55. AMC Average

method complexity

56. Past faults Number

of past faults

57. Changes Number of

times a module has

been changed

58. Age Age of a module

59. Changeset Number

of modules changed

60. N1 Total number of

operators



22/28

Defects Density @yegor256

61. N2 Total number of

operands

62. g1 Number of unique

operators

63. g2 Number of unique

operands

64. AID Average

inheritance depth of

a class

65. LCOM1 Lack of

cohesion in methods

66. LCOM5 Lack of

cohesion in methods

67. Co Connectivity

68. LCOM3 Lack of

cohesion in methods

69. LCOM4 Lack of

cohesion in methods

70. ICH Information-

flow-based cohesion

71. ICP Information-

flow-based coupling

72. IH-ICP Information-

flow-based

inheritance coupling

73. NIH-ICP
Information-flow-

based

non-inheritance

coupling

74. CMC Class method

complexity

75. CTA Coupling

through abstract

data type

76. CTM Coupling

through message

passing

77. NAC Number of

ancestor

78. NDC Number of

descendent

79. NLM Number of

local methods

80. DAC Data

abstraction coupling

81. DAC1 Data

abstraction coupling

82. MPCMessage

passing coupling

83. NCM Number of

class methods

84. NIM Number of

instance methods

85. NMA Number of

methods added

86. NMI Number of

methods inherited

87. NMO Number of

methods overridden

88. NOA Number of

attributes

89. NOAM Number of

added methods

90. NOO Number of

operations

91. NOOM Number of

overridden methods

92. NOP Number of

parents

93. NPAVG Average

number of

parameters per

method

94. SIX Specialization

index

95. C3 Conceptual

cohesion of Classes

96. McCabe Cyclomatic

Complexity

97. Delta Code delta

98. Churn Code churn

99. Devs Number of

developers

100. CLD Class-to-leaf

depth

101. NOA Number of

ancestors

102. NOD Number of

descendants

103. LOC Lines of Code

Source: Danijel Radjenović, Marjan Heričko, Richard Torkar, and Aleš Živkovič. Software Fault Prediction

Metrics: A Systematic Literature Review. Information and Software Technology, 55(8):1397–1418, 2013.
doi:10.1016/j.infsof.2013.02.009

https://doi.org/10.1016/j.infsof.2013.02.009


23/28

Defects Density @yegor256

Xiao Yu

“The problem of predicting the precise number of

defects via regression algorithms is far from being

solved.”

— Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng, Fuyang Li, and Heng Dai.
Predicting the Precise Number of Software Defects: Are We There yet?
Information and Software Technology, 146:106847, 2022.
doi:10.1016/j.infsof.2022.106847

https://doi.org/10.1016/j.infsof.2022.106847


24/28

Defects Density @yegor256

Source: Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng,

Fuyang Li, and Heng Dai. Predicting the Precise

Number of Software Defects: Are We There yet?

Information and Software Technology, 146:106847,
2022. doi:10.1016/j.infsof.2022.106847

“Software testers want to not only

know which software modules

should be inspected first, but also

evaluate the reliability and

maintenance effort of each module.

Therefore, they can first employ the

historical data to construct a Defect

Number Prediction (DNP) model,

then use the two trained models to

predict the defective-proneness or

the number of defects.”

https://doi.org/10.1016/j.infsof.2022.106847


25/28

Defects Density @yegor256



26/28

Defects Density @yegor256

My Own Statistics (2 Feb 2024)

Github Repository Stack KLoC Issues I/KLoC

zerocracy/farm Java 58 2343 40.4
objectionary/eo Java 49 2837 57.9
yegor256/cactoos Java 34 1707 50.2
yegor256/takes Java 27 1227 45.4
zold-io/zold Ruby 12 810 67.5
yegor256/tacit CSS 1 227 227.0

All repositories are open source.

https://github.com/zerocracy/farm
https://github.com/objectionary/eo
https://github.com/yegor256/cactoos
https://github.com/yegor256/takes
https://github.com/zold-io/zold
https://github.com/yegor256/tacit


27/28

Defects Density @yegor256

References
Victor R. Basili and Barry T. Perricone. Software

Errors and Complexity: An Empirical

Investigation. Communications of the ACM, 27(1):

42–52, 1984. doi:10.1145/69605.2085.

Victor R. Basili, Lionel C. Briand, and Walcélio L.

Melo. A Validation of Object-Oriented Design

Metrics as Quality Indicators. IEEE Transactions
on Software Engineering, 22(10):751–761, 1996.
doi:10.1109/32.544352.

IEEE Standards Board. IEEE Std 982.2-1988: Guide for

the Use of IEEE Standard Dictionary of Measures

to Produce Reliable Software, 1989.

Shyam R. Chidamber and Chris F. Kemerer. A

Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):
476–493, 1994. doi:10.1109/32.295895.

Richard H. Cobb and Harlan D. Mills. Engineering

Software Under Statistical Quality Control. IEEE
Software, 7(6):45–54, 1990. doi:10.1109/52.60601.

Michael Fagan. Design and Code Inspections to

Reduce Errors in Program Development. IBM
Systems Journal, 38(3):258–287, 1999.
doi:10.1147/sj.382.0258.

Norman E. Fenton and Martin Neil. A Critique of

Software Defect Prediction Models. IEEE
Transactions on Software Engineering, 25(5):
675–689, 1999. doi:10.1109/32.815326.

Capers Jones. Applied Software Measurement.
McGraw-Hill, 1991. doi:10.5555/109758.

Capers Jones. The Pragmatics of Software Process

Improvements. Technical Council on Software
Engineering, 14(2), 1996.

John C. Kelly, Joseph S. Sherif, and Jonathan Hops.

An Analysis of Defect Densities Found During

Software Inspections. Journal of Systems and
Software, 17(2):111–117, 1992.
doi:10.1016/0164-1212(92)90089-3.

A. Güneş Koru, Dongsong Zhang, Khaled El Emam,

and Hongfang Liu. An Investigation into the

Functional Form of the Size-Defect Relationship

https://doi.org/10.1145/69605.2085
https://doi.org/10.1109/32.544352
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/52.60601
https://doi.org/10.1147/sj.382.0258
https://doi.org/10.1109/32.815326
https://doi.org/10.5555/109758
https://doi.org/10.1016/0164-1212(92)90089-3


28/28

Defects Density @yegor256

for Software Modules. IEEE Transactions on
Software Engineering, 35(2):293–304, 2008.
doi:10.1109/tse.2008.90.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi,

and Henrik Schwarz. An Empirical Study of

Software Reuse vs. Defect-Density and Stability.

In Proceedings of the 26th International Conference
on Software Engineering, pages 282–291. IEEE,
2004. doi:10.1109/icse.2004.1317450.

Nachiappan Nagappan and Thomas Ball. Static

Analysis Tools as Early Indicators of Pre-Release

Defect Density. In Proceedings of the 27th
International Conference on Software Engineering,
pages 580–586, 2005a.

doi:10.1145/1062455.1062558.

Nachiappan Nagappan and Thomas Ball. Use of

Relative Code Churn Measures to Predict System

Defect Density. In Proceedings of the 27th
International Conference on Software Engineering,

pages 284–292, 2005b.

doi:10.1145/1062455.1062514.

Danijel Radjenović, Marjan Heričko, Richard Torkar,

and Aleš Živkovič. Software Fault Prediction

Metrics: A Systematic Literature Review.

Information and Software Technology, 55(8):
1397–1418, 2013. doi:10.1016/j.infsof.2013.02.009.

Kazuhiro Yamashita, Changyun Huang, Meiyappan

Nagappan, Yasutaka Kamei, Audris Mockus,

Ahmed E. Hassan, and Naoyasu Ubayashi.

Thresholds for Size and Complexity Metrics: A

Case Study From the Perspective of Defect

Density. In Proceedings of the International
Conference on Software Quality, Reliability and
Security (QRS), pages 191–201. IEEE, 2016.
doi:10.1109/qrs.2016.31.

Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng, Fuyang

Li, and Heng Dai. Predicting the Precise Number

of Software Defects: Are We There yet?

Information and Software Technology, 146:106847,
2022. doi:10.1016/j.infsof.2022.106847.

https://doi.org/10.1109/tse.2008.90
https://doi.org/10.5555/1096143
https://doi.org/10.1109/icse.2004.1317450
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1109/qrs.2016.31
https://doi.org/10.1016/j.infsof.2022.106847

