Defects Density

YEGOR BUGAYENKO

Lecture #18 out of 24
80 minutes

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

2/28

“Feedback of results from inspections must be
counted for the programmer’s use and benefit: they
should not under any circumstances be used for
programmer performance appraisal.”

— Michael Fagan. Design and Code Inspections to Reduce Errors in Program
Development. IBM Systems Journal, 38(3):258-287, 1999. d0i:10.1147/sj.382.0258

MICHAEL FAGAN

Defects Density Qyegor256

https://doi.org/10.1147/sj.382.0258

Defects Density

Figure 8 Example of most error-prone modules based on |, and |,

Number of
Module name errors Lines of code
Echo 4 128
Zulu 10 323
Foxtrot 3 71
Alpha 7 264
Lima 2 106
Delta 3 1?5
67

Error density,
Errors/K. Loc

31

31

28
27<—Average
19 Error

15 Rate

Source: Michael Fagan. Design and Code Inspections to Reduce Errors in Program Development. IBM Systems

Journal, 38(3):258-287, 1999. do0i:10.1147/s.382.0258

3/28

Qyegor256

https://doi.org/10.1147/sj.382.0258

Defects Density

TABLE IX. Complexity and Error Rate for Errored Medules

Average Errors/1000

Module Cyclomatic Executable
Size Complexity Lines
50 6.2 65.0
100 19.6 33.3
150 27.5 24.6
200 56.7 13.4
>200 77.5 9.7

4/28

“One surprising result was that
module size did not account for
error proneness. In fact, it was
quite the contrary—the larger the
module, the less error prone it was.
This was true even though the
larger modules were more

complex.”

Source: Victor R. Basili and Barry T. Perricone.
Software Errors and Complexity: An Empirical
Investigation. Communications of the ACM, 27(1):
42-52, 1984. do0i:10.1145/69605.2085

Qyegor256

https://doi.org/10.1145/69605.2085

5/28

e | “A defect is a product anomaly. Examples include
T L such things as 1) omissions and imperfections found
during early life cycle phases and 2) faults contained
in software sufficiently mature for test or operation.”

— IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable Software, 1989

Defects Density Qyegor256

Defects Density

—~
|
(e JEN |

Then,
7 :
% D; = 78 (total defects found)
1=1
78 . .
DD = e 9.8 (estimated defect density)

Source: |IEEE Standards Board. IEEE Std 982.2-1988:

Guide for the Use of IEEE Standard Dictionary of
Measures to Produce Reliable Software, 1989

6/28

“This measure has a degree of
indeterminism. For example, a low
value may indicate either a good
process and a good product or it
may indicate a bad process. If the
value is low compared to similar
past projects, the inspection
process should be examined. If the
inspection process is found to be
adequate, it should then be
concluded that the development
process has resulted in a relatively
defect-free product.”

Qyegor256

Defects Density

Measures (Experience)

Product Measures

Process Measures

Errors,
Faults,
Failures

Mean Time
to Failure;
Failure
Rate

Reliability Remaining Completeness

Growth &
Projection

Product
Faults

C

&

Complexity

Management
Control

Coverage

Risk,
Benefit,
Cost.

Evaluation

1. Fault density (2)

2. Defect density (3)

3. Cumulative failure profile (1)

4. Fault-days number (0)

E bl el B

5. Functional or modular test coverage (1)

6. Cause and effect graphing (2)

7. Requirements traceability (3)

B]

| |

8. Defect indices (1)

e

9. Error distribution(s) (1)

D (b4

10. Software maturity index (1)

11. Man hours per major defect detected (2)

12. Number of conflicting requirements (2)

13. Number of entries/exists per module (1)

14. Software science measures (3)

15. Graph-theoretic complexity for architecture (1)

16. Cyclomatic complexity (3)

17. Minimal unit test case determination (2)

bl el tad ol

18. Run reliability (2)

19. Design structure (1)

kel

20. Mean time to discover the next K faults (3)

21. Software purity level (1)

22. Estimated number of faults remaining (seeding) (2)

23. Reguirements compliance (1)

24, Test coverage (2)

25. Data or information flow complexity (1)

26. Reliability growth function (2)

27. Residual fault count (1)

28. Failure analysis using elapsed time (3)

29. Testing sufficiency (0)

30. Mean-time-to-failure (3)

bl]

31. Failure rate (3)

32. Software documentation & source listings (2)

33. RELY - (Required Software Reliability) (1)

34. Software release readiness (0)

35. Completeness (2)

36. Test accuracy (1)

Il]

37. System performance reliability (2)

38. Independent process reliability (0)

39. Combined HW/SW system operational availability (0)

P (| b4

XUIE[\ UoniealISse|) aInsesp\ — -1 d|qeL

Source: IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE Standard Dictionary of Measures
to Produce Reliable Software, 1989

7/28

Qyegor256

8/28

39 Measures for Reliable Software

1. Fault Density 14. Software Science Measures 27. Residual Fault Count
2. Defect Density 15. Graph-Theoretic Complexity for Arch. 28. Failure Analysis Using Elapsed Time
3. Cumulative Failure Profile 16. Cyclomatic Complexity 29. Testing Sufficiency
4. Fault-Days Number 17. Minimal Unit Test Case Determination 30. Mean Time to Failure
5. Functional or Modular Test Coverage 18. Run Reliability 31. Failure Rate
6. Cause and Effect Graphing 19. Design Structure 32. Software Docmtn and Source Listings
7. Requirements Traceability 20. Mean Time to Discover the Next K Faults 33. RELY-Required Software Reliability
8. Defect Indices 21. Software Purity Level 34. Software Release Readiness
9. Error Distribution(s) 22. Estimated Num. of Faults Remaining 35. Completeness
10. Software Maturity Index 23. Requirements Compliance 36. Test Accuracy
11. Manhours per Major Defect Detected 24. Test Coverage 37. System Performance Reliability
12. Number of Conflicting Requirements 25. Data or Information Flow Complexity 38. Independent Process Reliability
13. Number of Entries and Exits per Module 26. Reliability Growth Function 39. Combined H&S Operational Availability

Source: IEEE Standards Board. IEEE Std 982.2-1988: Guide for the Use of IEEE Standard Dictionary of Measures
to Produce Reliable Software, 1989

Defects Density Qyegor256

9/28

“While our experience in applying statistical
quality-control techniques to software development
is limited, initial experience indicates that five fixes
per thousand lines of code can be tolerated without
invalidating the application of statistics to estimate
MTTF. This failure rate is low compared to normal
development practices, where 20 to 60 fixes per
thousand lines of code is not atypical.”

HARLAN D. MiLLS

— Richard H. Cobb and Harlan D. Mills. Engineering Software Under Statistical
Quality Control. IEEE Software, 7(6):45-54, 1990. doi:10.1109/52.60601

Defects Density Qyegor256

https://doi.org/10.1109/52.60601

10/28

“The analysis showed a significantly higher density
of defects during requirements inspections. It was
also observed, that the defect densities found
decreased exponentialy as the mork products
approached the coding phase.”

— John C. Kelly, Joseph S. Sherif, and Jonathan Hops. An Analysis of Defect
Densities Found During Software Inspections. Journal of Systems and Software,
17(2):111-117, 1992. d0i:10.1016/0164-1212(92)90089-3

JOSEPH SHERIF

Defects Density Qyegor256

https://doi.org/10.1016/0164-1212(92)90089-3

11/28

“Five out of the six object-oriented metrics presented
by Chidamber and Kemerer [1994] appear to be
useful to predict class fault-proneness during the
high- and low-level design phases of the life-cycle.”

VicTor R. BASILI

Defects Density Qyegor256

https://doi.org/10.1109/32.544352

12/28

“Our critical review of state-of-the-art of models for
predicting software defects has shown that many
methodological and theoretical mistakes have been
made... We recommend holistic models for software
defect prediction, using Bayesian Belief Networks,
as alternative approaches to the single-issue models
used at present.”

NORMAN FENTON — Norman E. Fenton and Martin Neil. A Critique of Software Defect Prediction
Models. IEEE Transactions on Software Engineering, 25(5):675-689, 1999.
doi:10.1109/32.815326

Defects Density Qyegor256

https://doi.org/10.1109/32.815326

Defects Density

TABLE 4
DerFecTs DENSITY (F/KLOC) vs. MTTF
F/IKLOC MTTF
> 30 1 min
20-30 4-5 min
5-10 1 hr
2-5 several hours
1-2 24 hr
0.51 1 month

13/28

“This means we should be very
wary of attempts to equate fault
densities with failure rates, as
proposed for example by Jones
[1996]. Although highly attractive
in principle, such a model does not
stand up to empirical validation.”

Source: Norman E. Fenton and Martin Neil. A
Critique of Software Defect Prediction Models. IEEE
Transactions on Software Engineering, 25(5):675-689,
1999. doi:10.1109/32.815326

Qyegor256

https://doi.org/10.1109/32.815326

Defects Density

DEFECTS PER LIFE-CYCLE PHASE PREDICTION

TABLE 1

USING TESTING METRICS

Defect Origins Defects per Function Point
Requirements 1.00
Design 1.25
Coding 1.75
Documentation 0.60
Bad fixes 0.40

Total 5.00

14/28

“We already see defect density
defined in terms of defects per
function point, and empirical
studies are emerging that seem
likely to be the basis for predictive
models. For example, Jones [1991]
reports the following
bench-marking study, reportedly
based on large amounts of data
from different commercial sources.”

Source: Norman E. Fenton and Martin Neil. A
Critique of Software Defect Prediction Models. IEEE
Transactions on Software Engineering, 25(5):675-689,
1999. doi:10.1109/32.815326

Qyegor256

https://doi.org/10.1109/32.815326

Defects Density

“Industry average experience is about 1-25 errors per
1000 lines of code for delivered software. Cases that
have one-tenth as many errors as this are rare; cases
that have 10 times more tend not to be reported.
(They probably aren’t ever completed!) Microsoft
experiences about 10-20 defects per 1000 lines of

code during in-house testing and 0.5 defects per
1000 lines of code in released product.”

STEVE MCCONNELL — Steve McConnell. Code Complete. Pearson Education, 2004.
d0i:10.5555/1096143

15/28

Qyegor256

https://doi.org/10.5555/1096143

16/28

“The analysis showed that reused components have
lower defect-density than non-reused ones. Reused
components have more defects with highest severity
than the total distribution, but less defects after
delivery.”

— Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi, and Henrik Schwarz. An
Empirical Study of Software Reuse vs. Defect-Density and Stability. In
Proceedings of the 26th International Conference on Software Engineering, pages
282-291. IEEE, 2004. d0i:10.1109/icse.2004.1317450

PARASTOO MOHAGHEGHI

Defects Density Qyegor256

https://doi.org/10.1109/icse.2004.1317450

17/28

“A case study performed on Windows Server 2003
indicates the validity of the relative code churn
measures as early indicators of system defect
density. Our code churn metric suite is able to
discriminate between fault and not fault-prone
binaries with an accuracy of 89%.”

— Nachiappan Nagappan and Thomas Ball. Use of Relative Code Churn
| Measures to Predict System Defect Density. In Proceedings of the 27th

~ ' International Conference on Software Engineering, pages 284-292, 2005b.
doi:10.1145/1062455.1062514

Defects Density Qyegor256

https://doi.org/10.1145/1062455.1062514

18/28

“Our results show that the static analysis defect
density is correlated at statistically significant levels
to the pre-release defect density determined by
various testing activities. Further, the static analysis
defect density can be used to predict the pre-release
defect density with a high degree of sensitivity.”

— Nachiappan Nagappan and Thomas Ball. Static Analysis Tools as Early

Indicators of Pre-Release Defect Density. In Proceedings of the 27th International
Conference on Software Engineering, pages 580-586, 2005a.
doi:10.1145/1062455.1062558

THOMAS BALL

Defects Density

Qyegor256

https://doi.org/10.1145/1062455.1062558

Defects Density

A GUNES Koru

19/28

“We studied four large-scale object-oriented
products, Mozilla, Cn3d, JBoss, and Eclipse. We
observed that defect proneness increased as class
size increased, but at a slower rate; smaller classes
were proportionally more problematic than larger
classes.”

— A. Giines Koru, Dongsong Zhang, Khaled El Emam, and Hongfang Liu. An
Investigation into the Functional Form of the Size-Defect Relationship for
Software Modules. IEEE Transactions on Software Engineering, 35(2):293-304,
2008. d0i:10.1109/tse.2008.90

Qyegor256

https://doi.org/10.1109/tse.2008.90

20/28

“Although we found some support for findings in
recent literature that smaller files have higher
defects density, we found further evidence that very
large or complex files have lower defect densities
and in some cases even lower defect proneness. Our
findings have immediate practical implications: the
redistribution of Java code into smaller and less
complex files may be counterproductive.”

KAZUHIRO YAMASHITA

— Kazuhiro Yamashita, Changyun Huang, Meiyappan Nagappan, Yasutaka
Kamei, Audris Mockus, Ahmed E. Hassan, and Naoyasu Ubayashi. Thresholds
for Size and Complexity Metrics: A Case Study From the Perspective of Defect
Density. In Proceedings of the International Conference on Software Quality,
Reliability and Security (QRS), pages 191-201. IEEE, 2016.
do0i:10.1109/qrs.2016.31

Defects Density Qyegor256

https://doi.org/10.1109/qrs.2016.31

10.

100+ Metrics that Predict Faults

. AHF Attribute

Hiding Factor

. AIF Attribute

Inheritance Factor

. COF Coupling Factor

MHF Method Hiding
Factor

. MIF Method

Interface Factor
POF Polymorphism
Factor

. SCC Similarity-based

Class Cohesion

. ANA Average

Number of Ancestors

. CAM Cohesion

Among Methods
CIS Class Interface
Size

Defects Density

11.

12.

13.

14.

15.

16.

17.

18.

19.

DAM Data Access
Metric

DCC Direct Class
Coupling

DSC Design size in
classes

MFA Measure of
Functional
Abstraction

MOA Measure of
Aggregation

NOH Number of
hierarchies

NOM Number of
Methods

NOP Number of
polymorphic
methods

LCC Loose class
cohesion

20.

21.
22.
23.
24.

25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
35.
36.
37.

TCC Tight class
cohesion
ACAIC
ACMIC
AMMIC

Coh A variation on
LCOM5
DCAEC
DCMEC
DMMEC
FCAEC
FCMEC
FMMEC
IFCAIC
IFCMIC
IFMMIC
OCAEC
OCAIC
OCMEC
OCMIC

38.
39.
40.
41.
42.
43.
44.

45.

46.

47.

48.

49.

50.

OMMEC

OMMIC

ATTRIB Attributes
DELS Deletes
EVNT Events
READS Reads
RWD
Read/write/deletes
STATES States
WRITES Writes
CBO Coupling
between object
classes

DIT Depth of
inheritance tree
LCOM Lack of
cohesion in methods
LCOM2 Lack of
cohesion in methods

51.
52.
53.
54.
55.
56.
57.
58.
. Changeset Number

60.

21/28

NOC Number of
children

NTM Number of
trivial methods

RFC Response for a
class

WMC Weighted
methods per class
AMC Average
method complexity
Past faults Number
of past faults
Changes Number of
times a module has
been changed

Age Age of a module

of modules changed

Nj Total number of
operators

Qyegor256

61.

62.

63.

64.

65.

66.

67.
68.

69.

N, Total number of
operands

g1 Number of unique
operators

g2 Number of unique
operands

AID Average
inheritance depth of
a class

LCOMT1 Lack of
cohesion in methods
LCOMS5 Lack of
cohesion in methods
Co Connectivity
LCOMS3 Lack of
cohesion in methods
LCOM4 Lack of
cohesion in methods

70.

71.

72.

73.

74.

75.

76.

ICH Information-

flow-based cohesion
ICP Information-

flow-based coupling
IH-ICP Information-

flow-based

inheritance coupling
NIH-ICP
Information-flow-
based
non-inheritance
coupling

CMC Class method
complexity

CTA Coupling
through abstract

data type
CTM Coupling

through message

77.

78.

79.

80.

81.

82.

83.

84.

85.

passing

NAC Number of
ancestor

NDC Number of
descendent

NLM Number of
local methods

DAC Data
abstraction coupling
DAC1 Data
abstraction coupling
MPC Message
passing coupling
NCM Number of
class methods

NIM Number of
instance methods
NMA Number of
methods added

86.

87.

88.

89.

90.

91.

92.

93.

NMI Number of
methods inherited
NMO Number of
methods overridden
NOA Number of
attributes

NOAM Number of
added methods
NOO Number of
operations

NOOM Number of
overridden methods
NOP Number of
parents

NPAVG Average
number of
parameters per
method

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

22/28

SIX Specialization
index

C3 Conceptual
cohesion of Classes
McCabe Cyclomatic
Complexity

Delta Code delta
Churn Code churn
Devs Number of
developers

CLD Class-to-leaf
depth

NOA Number of
ancestors

NOD Number of
descendants

LOC Lines of Code

Source: Danijel Radjenovié¢, Marjan Heri¢ko, Richard Torkar, and Ales Zivkovi¢. Software Fault Prediction
Metrics: A Systematic Literature Review. Information and Software Technology, 55(8):1397-1418, 2013.
doi:10.1016/j.infsof.2013.02.009

Defects Density

Qyegor256

https://doi.org/10.1016/j.infsof.2013.02.009

23/28

“The problem of predicting the precise number of

defects via regression algorithms is far from being
solved.”

— Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng, Fuyang Li, and Heng Dai.
Predicting the Precise Number of Software Defects: Are We There yet?

Information and Software Technology, 146:106847, 2022.
doi:10.1016/j.infsof.2022.106847

Xi1A0 Yu

Defects Density

Qyegor256

https://doi.org/10.1016/j.infsof.2022.106847

Defects Density

Table 1

‘The literature overview of the studies for predicting the numbers of defect.

Study Corpus/Number Regression algorithms® Performance measures
Ostrand [18] 2005 185/12 Negative Binomial Regression (NBR) PofB
Janes [19] 2006 185/5 Poisson Regression (PR), NBR, Zero-Inflated Negative Binomial Alberg diagrams
Regression (ZINBR)
Gao [20] 2007 155/1 PR, Zero-Inflated Poisson Regression (ZIPR), NBR, ZINBR, Hurdle AAE, ARE
Poisson Regression (HPR)
Afzal [21] 2008 155/3 Genetic Programming (GP) Pred()), MMRE, Spearman
Yu [22] 2012 PROMISE/S NBR Accuracy, Precision, Recall
Wang [15] 2012 Bugzilla and Jira/6 BugStates Absolute Error (AE), Mean
Absolute Error (MAE)
Rathore [23] 2015 PROMISE/10 Neural Network Regression (NNR), Genetic Programming (GP) ARE, Recall, Completeness
Rathore [24] 2015 PROMISE/10 G ARE, Recall, Completeness
Chen [25] 2015 PROMISE/26 Linear Regression (LR), Bayesian Ridge Regression (BRR), Support Precision, RMSE
Vector Regression (SVR), Nearest Neighbors Regression (NNR), Decision
‘Tree Regression (DTR), Gradient Boosting Regression (GBR)
Rathore [26] 2016 PROMISE/18 DTR AAE, ARE, Pred()
Rathore [27] 2016 Eclipse/3 (Bagging/Boosting/Random subspace/Rotation AAE, ARE
Forest/Stacking) +(LR/Multilayer Perceptron Regression (MPR)/DTR)
Rathore [28] 2017 Firefox/3 NBR, ZIPR, MPR, GP, DTR, LR AAE, ARE, Pred(),
Completeness
Rathore [29] 2017 PROMISE/11 Linear Regression based Combination Rule (LRCR), Gradient Boosting AAE, ARE, Pred(),
based Combination Rule (GRCR), MPR, GP, LR, NBR, ZIPR Completeness
Rathore [30] 2017 PROMISE and Eclipse/17 Error Rate based Weighted Average (FRWA) combination rule, Linear AAE, ARE, Pred(D),
Regression based Weighted Average (LRWA) combination rule, Decision Completeness
‘Tree Forest based (DTF) ensemble method, Gradient Boosting
Regression (GBR) based ensemble method, LR, MPR, DR, GP, NBR,
Yu [31] 2017 PROMISE/22 (SMOTER/RUS/AdaBoost.R2)+(DTR/BRR/LR), FPA, Kendall
RusNDBoost
Zhang [14] 2018 Firefox/7 Sample entropy-Support Vector Regression (SSVR), Auto-Regressive Magnitude of Relative
Integrated Moving Average (ARIMA) model, X12-ARIMA model, NNR Error (MRE), MVMRE
Wu [32] 2018 PROMISE/31 BRR, DTR, GBR, LR, NNR, MPR, and SVR FPA
Rathore [33] 2019 PROMISE and Eclipse/19 A dynamic selection algorithm (DynSelection), LR, MPR, DTR, GP, AAE, ARE, Pred(D),
NBR, ZIPR Precision, Recall,
F-measure
Chen [34] 2019 PROMISE/24 (SMOTER/SMOTUNED/AdaBoost.R2)+(DTR/BRR/LR) FPA, Kendall
Huang (35 2019 PROMISE/30 Multi-Project Regression (MPR), LR, NNR, SVR, DTR, BRR, GBR AAE, ARE,
Nevendra [36] 2019 PROMISE/15 AdaBoost.R2+(Extra Tree Regression (ETR)/Random Forest Regression MAE, MRE
(RFR)/Extreme Gradient Boosting Regression (EGBR)/GBR)
Qiao [17] 2020 PROMISE and 15/2 Deep Learning Neural Network (DPNN), SVR, DTR, Fuzzy Support Mean Squared Error
Vector Regression (FSVR), RFR (MsB), R
Bal (37] 2020 PROMISE/26 Weighted Regularization Extreme Learning Machine (WR-ELM), AAE, ARE, Pred(D),
Weighted Extreme Learning Machine (WELM), ELM,
SmoteR+(ELM/SVR/NNR)
Tong [38] 2021 PROMISE/27 Subspace Hybrid Sampling Ensemble (SHSE), SmoteR, SmoteRDE, FPA, Kendall, RMSE

DynSelection, SmoteNDBoost, RusNDBoost

Forest, and Stacking) use LR, MPR, and DTR as the base learners.

Source: Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng,
Fuyang Li, and Heng Dai. Predicting the Precise
Number of Software Defects: Are We There yet?
Information and Software Technology, 146:106847,

R/MPR/DTR) represents that the five ensemble learning methods (Bagging, Boosting, Random subspace, Rotation

It is the same below.

2022. doi:10.1016/j.infsof.2022.106847

24/28

“Software testers want to not only
know which software modules
should be inspected first, but also
evaluate the reliability and
maintenance effort of each module.
Therefore, they can first employ the
historical data to construct a Defect
Number Prediction (DNP) model,
then use the two trained models to
predict the defective-proneness or
the number of defects.”

Qyegor256

https://doi.org/10.1016/j.infsof.2022.106847

25/28

Defects Density Qyegor256

Defects Density

My Own Statistics (2 Feb 2024)

Github Repository Stack KLoC Issues I/KLoC

zerocracy/farm Java
objectionary/eo Java
yegor2b6/cactoos Java
yegor2b6/takes Java,
zold-io/zold Ruby
yegor2b6/tacit CSS

58
49
34
27
12

1

2343 40.4
2337 57.9
1707 50.2
1227 45.4
310 67.5
227 227.0

All repositories are open source.

26/28

Qyegor256

https://github.com/zerocracy/farm
https://github.com/objectionary/eo
https://github.com/yegor256/cactoos
https://github.com/yegor256/takes
https://github.com/zold-io/zold
https://github.com/yegor256/tacit

Defects Density

References

Victor R. Basili and Barry T. Perricone. Software
Errors and Complexity: An Empirical
Investigation. Communications of the ACM, 27(1):
42-52, 1984. d0i:10.1145/69605.2085.

Victor R. Basili, Lionel C. Briand, and Walcélio L.
Melo. A Validation of Object-Oriented Design
Metrics as Quality Indicators. /EEE Transactions
on Software Engineering, 22(10):751-761, 1996.
doi:10.1109/32.544352.

IEEE Standards Board. IEEE Std 982.2-1988: Guide for
the Use of IEEE Standard Dictionary of Measures
to Produce Reliable Software, 1989.

Shyam R. Chidamber and Chris F. Kemerer. A
Metrics Suite for Object Oriented Design. [EEE
Transactions on Software Engineering, 20(6):
476-493, 1994. doi:10.1109/32.295895.

Richard H. Cobb and Harlan D. Mills. Engineering
Software Under Statistical Quality Control. IEEE
Software, 7(6):45-54, 1990. doi:10.1109/52.60601.

Michael Fagan. Design and Code Inspections to
Reduce Errors in Program Development. /IBM
Systems Journal, 38(3):258—-287, 1999.
doi:10.1147/sj.382.0258.

Norman E. Fenton and Martin Neil. A Critique of
Software Defect Prediction Models. /EEE
Transactions on Software Engineering, 25(5):
675-689, 1999. doi:10.1109/32.815326.

Capers Jones. Applied Software Measurement.
McGraw-Hill, 1991. do0i:10.5555/109758.

Capers Jones. The Pragmatics of Software Process
Improvements. Technical Council on Software
Engineering, 14(2), 1996.

John C. Kelly, Joseph S. Sherif, and Jonathan Hops.
An Analysis of Defect Densities Found During
Software Inspections. Journal of Systems and
Software, 17(2):111-117, 1992.
doi:10.1016/0164-1212(92)90089-3.

A. Giines Koru, Dongsong Zhang, Khaled El Emam,

and Hongfang Liu. An Investigation into the
Functional Form of the Size-Defect Relationship

27/28

Qyegor256

https://doi.org/10.1145/69605.2085
https://doi.org/10.1109/32.544352
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/52.60601
https://doi.org/10.1147/sj.382.0258
https://doi.org/10.1109/32.815326
https://doi.org/10.5555/109758
https://doi.org/10.1016/0164-1212(92)90089-3

Defects Density

for Software Modules. IEEE Transactions on
Software Engineering, 35(2):293-304, 2008.
doi:10.1109/tse.2008.90.

Steve McConnell. Code Complete. Pearson Education,
2004. doi:10.5555/1096143.

Parastoo Mohagheghi, Reidar Conradi, Ole M. Killi,
and Henrik Schwarz. An Empirical Study of
Software Reuse vs. Defect-Density and Stability.
In Proceedings of the 26th International Conference
on Software Engineering, pages 282-291. IEEE,
2004. doi:10.1109/icse.2004.1317450.

Nachiappan Nagappan and Thomas Ball. Static
Analysis Tools as Early Indicators of Pre-Release
Defect Density. In Proceedings of the 27th
International Conference on Software Engineering,
pages 580-586, 2005a.
doi:10.1145/1062455.1062558.

Nachiappan Nagappan and Thomas Ball. Use of
Relative Code Churn Measures to Predict System
Defect Density. In Proceedings of the 27th
International Conference on Software Engineering,

pages 284-292, 2005b.
d0i:10.1145/1062455.1062514.

Danijel Radjenovi¢, Marjan Hericko, Richard Torkar,

and Ale$ Zivkovi¢. Software Fault Prediction
Metrics: A Systematic Literature Review.
Information and Software Technology, 55(8):
1397-1418, 2013. doi:10.1016/j.infsof.2013.02.009.

Kazuhiro Yamashita, Changyun Huang, Meiyappan

Nagappan, Yasutaka Kamei, Audris Mockus,
Ahmed E. Hassan, and Naoyasu Ubayashi.
Thresholds for Size and Complexity Metrics: A
Case Study From the Perspective of Defect
Density. In Proceedings of the International
Conference on Software Quality, Reliability and
Security (QRS), pages 191-201. IEEE, 2016.
doi:10.1109/qrs.2016.31.

Xiao Yu, Jacky Keung, Yan Xiao, Shuo Feng, Fuyang

Li, and Heng Dai. Predicting the Precise Number
of Software Defects: Are We There yet?
Information and Software Technology, 146:106847,
2022. doi:10.1016/j.infsof.2022.106847.

28/28

Qyegor256

https://doi.org/10.1109/tse.2008.90
https://doi.org/10.5555/1096143
https://doi.org/10.1109/icse.2004.1317450
https://doi.org/10.1145/1062455.1062558
https://doi.org/10.1145/1062455.1062514
https://doi.org/10.1016/j.infsof.2013.02.009
https://doi.org/10.1109/qrs.2016.31
https://doi.org/10.1016/j.infsof.2022.106847

