
Function Points

Yegor Bugayenko

Lecture #17 out of 24

80 minutes

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.



2/31

Function Points @yegor256

“From the start of the software era in the 1950s until

roughly 1970, software cost estimating was

performed manually, using simple rules of thumb or

local estimating algorithms developed through trial

and error methods.”

— Capers Jones. Estimating Software Costs: Bringing Realism to Estimating.
McGraw-Hill, 2007



3/31

Function Points @yegor256

“Our techniques of estimating are poorly developed.

More seriously, they reflect an unvoiced assumption

which is quite untrue, i.e., that all will go well.”

— Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Pearson Education, 1995. doi:10.5555/540031

https://doi.org/10.5555/540031


4/31

Function Points @yegor256

“SLIM: In general, the size of the product in source

statements is S = C ×K1/3 × t4/3, where C is a

productivity constant, K is development effort, and

t is time.”

— Lawrence H. Putnam. A General Empirical Solution to the Macro Software
Sizing and Estimating Problem. IEEE Transactions on Software Engineering, (4):
345–361, 1978. doi:10.1109/tse.1978.231521

https://doi.org/10.1109/tse.1978.231521


5/31

Function Points @yegor256

“COCOMO (Constructive Cost Model): We

compute the estimated development effort as the

nominal development effort times the product of the

effort multipliers for the 15 cost driver attributes... A

nominal development effort is estimated as a

function of the product’s size in delivered source

instructions in thousands (KDSI) and the project’s

development mode.”

— Barry W. Boehm. Software Engineering Economics. IEEE Transactions on
Software Engineering, (1):4–21, 1984. doi:10.1109/tse.1984.5010193

https://doi.org/10.1109/tse.1984.5010193


6/31

Function Points @yegor256

“FPA: The general approach is to count the number

of external user inputs, inquiries, outputs, and

master files delivered by the development project.

These factors are outward manifestations of any

application. They cover all the functions in an

application.”

— Allan J. Albrecht. Measuring Application Development Productivity. In
Proceedings of the Joint SHARE, GUIDE, and IBM Application Development
Symposium, pages 83–92, 1979



7/31

Function Points @yegor256

“If the inputs, outputs, or files are

extra complicated, we add 5%.

Complex internal processing can

add another 5%. On-line functions

and performance are addressed in

other questions. The maximum

adjustment possible is 50%,

expressed as ±25% so that the

weighted summation is the average

complexity.”

Source: Allan J. Albrecht. Measuring Application

Development Productivity. In Proceedings of the Joint
SHARE, GUIDE, and IBM Application Development
Symposium, pages 83–92, 1979



8/31

Function Points @yegor256

“In order to find the adjusted

function point (AFP) value, the UFP

(the raw function count weighted

by the appropriate complexity

shown in the Table) is multiplied by

the VAF.”

Source: Daniel D. Galorath and Michael W. Evans.

Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

https://doi.org/10.1201/9781420013122


9/31

Function Points @yegor256

“The entity-relationship (ER) model adopts the more

natural view that the real world consists of entities

and relationships. It incorporates some of the

important semantic information about the real

world.”

— Peter Pin-Shan Chen. The Entity-Relationship Model — Toward a Unified
View of Data. ACM Transactions on Database Systems, 1(1):9–36, 1976.
doi:10.1145/320434.320440

https://doi.org/10.1145/320434.320440


10/31

Function Points @yegor256

Source: Peter Pin-Shan Chen. The Entity-Relationship Model — Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, 1976. doi:10.1145/320434.320440

https://doi.org/10.1145/320434.320440


11/31

Function Points @yegor256

“The Data Flow Diagram shows flow of data, not of

control. This is the difference between Data Flow

Diagrams and flowcharts. The Data Flow Diagram

portrays a situation from the point of view of the

data, while a flowchart portrays it from the point of

view of those who act upon the data.”

— Tom DeMarco. Structure Analysis and System Specification. Prentice Hall,
1978. doi:10.1007/978-3-642-48354-7_9

https://doi.org/10.1007/978-3-642-48354-7_9


12/31

Function Points @yegor256

Source: Tom DeMarco. Structure Analysis and System Specification. Prentice Hall, 1978.
doi:10.1007/978-3-642-48354-7_9

https://doi.org/10.1007/978-3-642-48354-7_9


13/31

Function Points @yegor256

“At least for the applications analyzed, both the

development work-hours and application size in

“SLOC” are strong functions of “function points” and

“input/output data item count.” Further, it appears

that basing applications development effort

estimates on the amount of function to be provided

by an application rather than an estimate of “SLOC”

may be superior.”

— Allan J. Albrecht and John E. Gaffney. Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering, (6):639–648, 1983.
doi:10.1109/tse.1983.235271

https://doi.org/10.1109/tse.1983.235271


14/31

Function Points @yegor256

“The major difference is that Mk II FPA, with its

finer granularity, is a continuous measure whereas

IFPUG limits component size once a threshold is

reached.”

— Charles R. Symons. Software Sizing and Estimating: Mk II FPA (Function Point
Analysis). John Wiley & Sons, Inc, 1991. doi:10.5555/120462

https://doi.org/10.5555/120462


15/31

Function Points @yegor256

Source: Charles R. Symons. Software Sizing and Estimating: Mk II FPA (Function Point Analysis). John Wiley &

Sons, Inc, 1991. doi:10.5555/120462

https://doi.org/10.5555/120462


16/31

Function Points @yegor256

“SEER-SEM is based on the concept that if a user

can describe the essential characteristics of a project

and range of size, SEER-SEM can provide estimates

of schedules, efforts, staffing, risks, uncertainties,

and defects, characterizing each as a most likely

estimate or a risk estimate.”

— Daniel D. Galorath and Michael W. Evans. Software Sizing, Estimation, and
Risk Management: When Performance Is Measured Performance Improves. CRC
Press, 2006. doi:10.1201/9781420013122

https://doi.org/10.1201/9781420013122


17/31

Function Points @yegor256

“SEER-FBS (“function-based

sizing”), introduced in 1992, is

consistent with IFPUG counting

rules, but adds a sixth category

(internal functions) that allows

users to account for highly

algorithmic processes of systems

such as real-time and

embedded-type systems.”

Source: Daniel D. Galorath and Michael W. Evans.

Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

https://doi.org/10.1201/9781420013122


18/31

Function Points @yegor256

“COCOMO-II: Success in all types of organization

depends increasingly on the development of

customized software solutions, yet more than half of

software projects now in the works will exceed both

their schedules and their budgets by more than

50%.”

— Barry Boehm, Chris Abts, Winsor Brown, Sunita Chulani, Bradford K. Clark,
Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Steece Bert. Software Cost
Estimation With COCOMO II. Englewood Cliffs, Prentice-Hall, 2000.
doi:10.5555/1795822

https://doi.org/10.5555/1795822


19/31

Function Points @yegor256

“Backfiring is converting lines of

code to function points by dividing

the line count by a conversion ratio.

The author does not recommend

backfiring as an approach to

generating function points.”

Source: Daniel D. Galorath and Michael W. Evans.

Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

https://doi.org/10.1201/9781420013122


20/31

Function Points @yegor256

“The reliability of function point analysis is good

enough to allow function points to serve as the basis

for contracts, for carrying out scholarly research, for

cost estimating, and for creating reliable

benchmarks. In fact, function points are now used

for more business purposes than any other metric in

the history of software.”

— Capers T. Jones. Foreword to IFPUG Functional Size Measurement Method.
ISO/IEC 20926:2009, 2009



21/31

Function Points @yegor256

IFPUG Procedure

Source: International Stardardization Organization ISO. ISO/IEC 20926:2009, IFPUG Functional Size

Measurement Method, 2009



22/31

Function Points @yegor256

“The application boundary indicates

the border between the software

being measured and the user.”

Source: International Stardardization Organization

ISO. ISO/IEC 20926:2009, IFPUG Functional Size

Measurement Method, 2009



23/31

Function Points @yegor256

“The 14 general system

characteristics are summarized into

the value adjustment factor (VAF).

When applied, the value

adjustment factor adjusts the

unadjusted function point count

±35 percent to produce the

adjusted function point count.”

Source: International Stardardization Organization

ISO. ISO/IEC 20926:2009, IFPUG Functional Size

Measurement Method, 2009



24/31

Function Points @yegor256

“The formula calculates the

development project function

points: DFP = (UFP + CFP) *
VAF. Where UFP is the unadjusted

function points for the functions

that will be available after

installation, and CFP is the

unadjusted function points added

by the conversion unadjusted

function point count.”

Source: International Stardardization Organization

ISO. ISO/IEC 20926:2009, IFPUG Functional Size

Measurement Method, 2009



25/31

Function Points @yegor256

“The function point metric, like LOC, is relatively

controversial... Opponents claim that the method

requires some ‘sleight of hand’ in that computation

is based on subjective, rather than objective, data.”

— Roger S. Pressman and Bruce Maxim. Software Engineering: A Practitioner’s
Approach. McGraw Hill, 2014



26/31

Function Points @yegor256

“Function Points and Function Counts (adjusted

FPs) can be used as predictors of KSLOC. In

particular, Function Counts correlated with KSLOC

at the level of 75.1 percent, which is similar to the

correlations published by Albrecht and Gaffney

[1983], and is likely to be good enough to be of use

to the software manager.”

— Chris F. Kemerer. An Empirical Validation of Software Cost Estimation
Models. Communications of the ACM, 30(5):416–429, 1987.
doi:10.1145/22899.22906

https://doi.org/10.1145/22899.22906


27/31

Function Points @yegor256

“Function point counts appear to be a more

consistent a priori measure of software size than

source lines of code. As such it is recommended that

function point estimates be used in preference to

lines of code estimates as the measure of system

size.”

— Graham C. Low and D. Ross Jeffery. Function Points in the Estimation and
Evaluation of the Software Process. IEEE Transactions on Software Engineering,
16(1):64–71, 1990. doi:10.1109/32.44364

https://doi.org/10.1109/32.44364


28/31

Function Points @yegor256

Function Point Standards

•Mark-II — ISO/IEC 20968:2002

• IFPUG — ISO/IEC 20926:2009

• FiSMA — ISO/IEC 29881:2010

• COSMIC — ISO/IEC 19761:2011

•Nesma — ISO/IEC 24570:2018

•OMG — ISO/IEC 19515:2019



29/31

Function Points @yegor256

Some Other Function Points

• Early and easy function points

• Engineering function points

•Object-Oriented Function Points (OOFP)

•Weighted Micro Function Points

• Fuzzy Function Points



30/31

Function Points @yegor256

References
Allan J. Albrecht. Measuring Application

Development Productivity. In Proceedings of the
Joint SHARE, GUIDE, and IBM Application
Development Symposium, pages 83–92, 1979.

Allan J. Albrecht and John E. Gaffney. Software

Function, Source Lines of Code, and Development

Effort Prediction: A Software Science Validation.

IEEE Transactions on Software Engineering, (6):
639–648, 1983. doi:10.1109/tse.1983.235271.

Barry Boehm, Chris Abts, Winsor Brown, Sunita

Chulani, Bradford K. Clark, Ellis Horowitz, Ray

Madachy, Donald J. Reifer, and Steece Bert.

Software Cost Estimation With COCOMO II.
Englewood Cliffs, Prentice-Hall, 2000.

doi:10.5555/1795822.

Barry W. Boehm. Software Engineering Economics.

IEEE Transactions on Software Engineering, (1):
4–21, 1984. doi:10.1109/tse.1984.5010193.

Frederick P. Brooks Jr. The Mythical Man-Month:

Essays on Software Engineering. Pearson
Education, 1995. doi:10.5555/540031.

Peter Pin-Shan Chen. The Entity-Relationship Model

— Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9–36, 1976.
doi:10.1145/320434.320440.

Tom DeMarco. Structure Analysis and System
Specification. Prentice Hall, 1978.
doi:10.1007/978-3-642-48354-7_9.

Daniel D. Galorath and Michael W. Evans. Software
Sizing, Estimation, and Risk Management: When
Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122.

International Stardardization Organization ISO.

ISO/IEC 20926:2009, IFPUG Functional Size

Measurement Method, 2009.

Capers Jones. Estimating Software Costs: Bringing
Realism to Estimating. McGraw-Hill, 2007.

Capers T. Jones. Foreword to IFPUG Functional Size
Measurement Method. ISO/IEC 20926:2009, 2009.

Chris F. Kemerer. An Empirical Validation of

https://doi.org/10.1109/tse.1983.235271
https://doi.org/10.5555/1795822
https://doi.org/10.1109/tse.1984.5010193
https://doi.org/10.5555/540031
https://doi.org/10.1145/320434.320440
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1201/9781420013122


31/31

Function Points @yegor256

Software Cost Estimation Models.

Communications of the ACM, 30(5):416–429, 1987.

doi:10.1145/22899.22906.

Graham C. Low and D. Ross Jeffery. Function Points

in the Estimation and Evaluation of the Software

Process. IEEE Transactions on Software
Engineering, 16(1):64–71, 1990.
doi:10.1109/32.44364.

Roger S. Pressman and Bruce Maxim. Software
Engineering: A Practitioner’s Approach. McGraw

Hill, 2014.

Lawrence H. Putnam. A General Empirical Solution

to the Macro Software Sizing and Estimating

Problem. IEEE Transactions on Software
Engineering, (4):345–361, 1978.
doi:10.1109/tse.1978.231521.

Charles R. Symons. Software Sizing and Estimating:
Mk II FPA (Function Point Analysis). John Wiley &

Sons, Inc, 1991. doi:10.5555/120462.

https://doi.org/10.1145/22899.22906
https://doi.org/10.1109/32.44364
https://doi.org/10.1109/tse.1978.231521
https://doi.org/10.5555/120462

