Function Points

YEGOR BUGAYENKO

Lecture #17 out of 24
80 minutes

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

2/31

“From the start of the software era in the 1950s until
roughly 1970, software cost estimating was
performed manually, using simple rules of thumb or
local estimating algorithms developed through trial
and error methods.”

— Capers Jones. Estimating Software Costs: Bringing Realism to Estimating.
McGraw-Hill, 2007

Function Points Qyegor256

3/31

“Our techniques of estimating are poorly developed.
More seriously, they reflect an unvoiced assumption

which is quite untrue, i.e., that all will go well.”

— Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Pearson Education, 1995. doi:10.5555/540031

Qyegor256

Function Points

https://doi.org/10.5555/540031

4/31

“SLIM: In general, the size of the product in source
statements is S = C' x K3 x t*/3, where C'is a
productivity constant, K is development effort, and
t is time.”

— Lawrence H. Putnam. A General Empirical Solution to the Macro Software
Sizing and Estimating Problem. IEEE Transactions on Software Engineering, (4):
345-361, 1978. d0i:10.1109/tse.1978.231521

Function Points Qyegor256

https://doi.org/10.1109/tse.1978.231521

5/31

“COCOMO (Constructive Cost Model): We
compute the estimated development effort as the
nominal development effort times the product of the
effort multipliers for the 15 cost driver attributes... A
nominal development effort is estimated as a
function of the product’s size in delivered source
instructions in thousands (KDSI) and the project’s
development mode.”

— Barry W. Boehm. Software Engineering Economics. IEEE Transactions on
Software Engineering, (1):4-21, 1984. doi:10.1109/tse.1984.5010193

Function Points Qyegor256

https://doi.org/10.1109/tse.1984.5010193

6/31

“FPA: The general approach is to count the number
of external user inputs, inquiries, outputs, and
master files delivered by the development project.
These factors are outward manifestations of any
application. They cover all the functions in an

application.”

— Allan J. Albrecht. Measuring Application Development Productivity. In
Proceedings of the Joint SHARE, GUIDE, and IBM Application Development
Symposium, pages 83-92, 1979

Function Points Qyegor256

Function Points

These counts are weighted by numbers designed ta
reflect the function value to the customer. The
weights used were determined by debate and trial.
These weights have given us good results:

o Number of Inputs X 4

« Number of Outputs X 5

« Number of Inquiries X 4

+ Number of Master Files X 10

Then we adjust that result for the effect of other
factors.

7/31

“If the inputs, outputs, or files are
extra complicated, we add 5%.
Complex internal processing can
add another 5%. On-line functions
and performance are addressed in
other questions. The maximum
adjustment possible is 50%,
expressed as £25% so that the
weighted summation is the average
complexity.”

Source: Allan J. Albrecht. Measuring Application
Development Productivity. In Proceedings of the Joint

SHARE, GUIDE, and IBM Application Development
Symposium, pages 83-92, 1979

Qyegor256

Function Points

Table 6.7 Function Complexity Table

Function Type Low | Average | High
External Input (EI) X3 x4 X6
External Output (EO) x4 x5 X7
Internal Logical Files (ILF) X7 x10 x15
External Interface Files (EIF) | x5 X7 x10
External Inquiry (EQ) X3 x4 X6

8/31

“In order to find the adjusted
function point (AFP) value, the UFP
(the raw function count weighted
by the appropriate complexity

shown in the Table) is multiplied by
the VAF”

Source: Daniel D. Galorath and Michael W. Evans.
Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

Qyegor256

https://doi.org/10.1201/9781420013122

9/31

“The entity-relationship (ER) model adopts the more
natural view that the real world consists of entities
and relationships. It incorporates some of the
important semantic information about the real
world.”

— Peter Pin-Shan Chen. The Entity-Relationship Model — Toward a Unified
View of Data. ACM Transactions on Database Systems, 1(1):9-36, 1976.
doi:10.1145/320434.320440

Function Points Qyegor256

https://doi.org/10.1145/320434.320440

EMPLOYEE

WORKER

ENTITY SET

. PROJECT
Yl 1 ProvecT |
M \/ N
RELATIONSHIP ENTITY SET

SET

Fig. 10. A simple entity-relationship diagram

Source: Peter Pin-Shan Chen. The Entity-Relationship Model — Toward a Unified View of Data. ACM
Transactions on Database Systems, 1(1):9-36, 1976. doi:10.1145/320434.320440

Function Points

10/31

Qyegor256

https://doi.org/10.1145/320434.320440

11/31

“The Data Flow Diagram shows flow of data, not of
control. This is the difference between Data Flow
Diagrams and flowcharts. The Data Flow Diagram
portrays a situation from the point of view of the
data, while a flowchart portrays it from the point of
& view of those who act upon the data.”

— Tom DeMarco. Structure Analysis and System Specification. Prentice Hall,
1978. d0i:10.1007/978-3-642-48354-7_9

Function Points Qyegor256

https://doi.org/10.1007/978-3-642-48354-7_9

12/31

Figure 8

Source: Tom DeMarco. Structure Analysis and System Specification. Prentice Hall, 1978.
doi:10.1007/978-3-642-48354-7_9

Function Points Qyegor256

https://doi.org/10.1007/978-3-642-48354-7_9

Function Points

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE9, NO, ¢, NOVEMBER 1983 o9

Software Function, Source Lines of Code, and
Development Effort Prediction: A Software
Science Validation

ALLAN J. ALBRECHT AND JOHN E. GAFENEY, JR., MEBER, IEEE

Absiact-One of the mst important probems faced by software
programning

[2] “oftware sience” or “soltware linguistis” model of 3 program
25 well a5 the “soft content” variation of Halsteads model suggested
by Gatney [7].

Fucthe, the high degeee of comlation between “function points™

and implement software
applications programs). I not a eview of [1]-[3] s suggested.
Indes: Terms—Cost estimatin, function points, software linguistics,
softwarescence, software iz estimation.
“FUNCTION POINTS” BACKGROUND
LBRECHT [1] has emploed a methodology for validal-
ing_estimates of the amount of work-effort (which he
alls work hours) needed (0 design and develop custom appli-
cation software. The approach taken is .. to st and count
the number of extemal user inputs, inguiries, outputs, and
maste fils to be delivered by the development project.” As
pointed out by Albrecht [1], “these factors are the outward
‘manifestations of any wpplcation. They cover all the func.
tions in an application.” Each of these categories of input
and output are counted individually and. then weighted by

Manuscipt seceived May 12, 1982;sevisd September 9. 1982.
A7, Albrecht is with the IBM Corporate Information Systems and
Adrinistation, Whit Plains, NY 1060
J.E, Gafiney, Ir. is withthe FederalSystems Division, 5M, Gaithers-
buig, MD.

numbers reflecting the relative value of the function (o the
user/customer. The weighted sum of the inputs and outputs
is called “function poinis.” Albrecht [1] states that the
weights used were “determined by debate and trial.” They are
givenin the section “Sclection of Estimating Formulas.”

“The thesis of this work is that the amount of function to be
provided by the application (program) can be estimated from
an itemizaion of the major components of data to be used or

" provided by it. Furthermore, this estimate of function should

be correlated to both the amount of “SLOC” to be developed
and the development effort needed.

A major reason for using “function points" as a measure is
that the point counts can be developed relatively easily in dis-
cussions with the user/customer at an early stage of the devl.
opment process. They relate directly to usee/customer require-
ments in a way that is more caslly understood by the user/
customer than “SLOC.”

‘Another major reason s the avalability of needed informa-
tion. Since it i reasonable to expect that a statement of basic
requirements includes an itemization of the inputs and outputs
o be used and provided by the application (program) from the
user's extemal view, an estimate may be validated early in the
development cycle with this approach.

A third reason is that “function points” can be used 1o
develop a general measure of development productivity (e.8.,
“function points per work-month” or “work hours per func.
tion point”), that may be used to demonstrate productivty
trends. Such a measure can give credit for productivity rela-
tive to the amount of user function delivered to the user/
customer per unit of development effort, with less concern
for effects of technology, language level, or unusual code
‘expansion occasioned by macros, calls and code reuse.

It is important to distinguish between (w0 types of work-
effort estimates, a primary or “task-analysis” estimate and &
“formula” estimate. The primary work-effort estimate should
always be based on an analysis of the tasks to be done, thus
providing the project team with an estimate @nd @ work plan
This paper discusses “formula” estimates which are based
solely on counts of inputs and outputs of the program to be
developed, and not on 3 detailed analysis of the development
tasks to be performed. It is ecommended that such “formula”™
estimates be used only 10 validate and provide perspective on
primary estimates

“SOFTWARE SCIENCE” BACKGROUND

Halstead [2] states that the number of tokens or symbols '
constituting 2 program is a function of 7, the “operator”

0098-5589/83/1100.0639501.00 © 1983 IEEE

13/31

“At least for the applications analyzed, both the
development work-hours and application size in
“SLOC” are strong functions of “function points” and
“input/output data item count.” Further, it appears
that basing applications development effort
estimates on the amount of function to be provided
by an application rather than an estimate of “SLOC”
may be superior.”

— Allan J. Albrecht and John E. Gaffney. Software Function, Source Lines of
Code, and Development Effort Prediction: A Software Science Validation. IEEE
Transactions on Software Engineering, (6):639-648, 1983.
doi:10.1109/tse.1983.235271

Qyegor256

https://doi.org/10.1109/tse.1983.235271

Function Points

14/31

@WILEY WILEY PROFESSIONAL COMPUTING

“The major difference is that Mk Il FPA, with its
finer granularity, is a continuous measure whereas

SOFTWARE — , .

SN EIRRE IFPUG limits component size once a threshold is

Nl reached.”
Mk Il FPA

(Furiction Point Analysis)

rl—‘_‘—

@

-
Tire

* Charles R. Symons

IT_? WILEY SERIES IN SOFTWARE ENGINEERING FRACTICE

— Charles R. Symons. Software Sizing and Estimating: Mk II FPA (Function Point
Analysis). John Wiley & Sons, Inc, 1991. do0i:10.5555/120462

Qyegor256

https://doi.org/10.5555/120462

15/31

The Functional Size (Function Point Index) is the weighted sum over all Logical
Transactions, of the Input Data Element Types (Ni), the Data Entity Types
Referenced (Ne), and the Output Data Element Types (No).

So the Function Point Index (FPI) for an application is:
FPI = Wi*2Ni + We * ZNe + Wo * ZNo,

where ‘' means the sum over all Logical Transactions, and the industry average

weights per Input Data Element Type, Data Entity Type Reference and Output Data
Element Type are, respectively:

Wi =0.58
We = 1.66
Wo = 0.26

Source: Charles R. Symons. Software Sizing and Estimating: Mk Il FPA (Function Point Analysis). John Wiley &
Sons, Inc, 1991. doi:10.5555/120462

Function Points Qyegor256

https://doi.org/10.5555/120462

Function Points

“SEER-SEM is based on the concept that if a user
can describe the essential characteristics of a project
and range of size, SEER-SEM can provide estimates
of schedules, efforts, staffing, risks, uncertainties,
and defects, characterizing each as a most likely
estimate or a risk estimate.”

— Daniel D. Galorath and Michael W. Evans. Software Sizing, Estimation, and
Risk Management: When Performance Is Measured Performance Improves. CRC
Press, 2006. d0i:10.1201/9781420013122

16/31

Qyegor256

https://doi.org/10.1201/9781420013122

Function Points

Table 6.8 Comparison SEER-SEM Function Modes: IFPUG
and SEER-SEM

IFPUG SEER-SEM
Functions Compatible Mode | Extended Mode
External inputs (Els) X X
External outputs (EOs) X X
External inquiries (EQs) X X
External interface files (EIFs) X X
Internal logical files (ILFs) X X
Internal functions X

Note: SEER-SEM, the cost model containing SEER-FBS, will also accept
unadjusted function point counts performed by traditional
counting.

17/31

“SEER-FBS (“function-based
sizing”), introduced in 1992, is
consistent with IFPUG counting
rules, but adds a sixth category
(internal functions) that allows
users to account for highly
algorithmic processes of systems
such as real-time and
embedded-type systems.”

Source: Daniel D. Galorath and Michael W. Evans.
Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

Qyegor256

https://doi.org/10.1201/9781420013122

18/31

“COCOMO-II: Success in all types of organization
depends increasingly on the development of
customized software solutions, yet more than half of
software projects now in the works will exceed both
their schedules and their budgets by more than
50%.”

SOFTWARE COST
ESTIMATION
AN SHO0 00 IORIMN — Barry Bochm, Chris Abts, Winsor Brown, Sunita Chulani, Bradford K. Clark,

o Ellis Horowitz, Ray Madachy, Donald J. Reifer, and Steece Bert. Software Cost

k

Estimation With COCOMO II. Englewood Cliffs, Prentice-Hall, 2000.
d0i:10.5555/1795822

Function Points Qyegor256

https://doi.org/10.5555/1795822

Function Points

Table 6.17 Conversion Ratios: Lines of Code per Function Point

Capers Jones

Source Code DCG Galorath
Language Likely | Low Mean High Likely
Basic Assembly | 575 | 200 320 450 320

C 225 60 128 170 61
FORTRAN 210 75 107 160 58
C++ 80 30 53 125 59

19/31

“Backfiring is converting lines of
code to function points by dividing
the line count by a conversion ratio.
The author does not recommend
backfiring as an approach to
generating function points.”

Source: Daniel D. Galorath and Michael W. Evans.
Software Sizing, Estimation, and Risk Management:
When Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122

Qyegor256

https://doi.org/10.1201/9781420013122

20/31

“The reliability of function point analysis is good
enough to allow function points to serve as the basis
for contracts, for carrying out scholarly research, for
cost estimating, and for creating reliable
benchmarks. In fact, function points are now used
for more business purposes than any other metric in
the history of software.”

— Capers T. Jones. Foreword to IFPUG Functional Size Measurement Method.
ISO/IEC 20926:2009, 2009

Function Points Qyegor256

21/31

IFPUG Procedure

Count Data |
| Functions |
| Determine N
Unadjusted |
I Count Function Point I
Identify Transactional Count Calculate
Determine e Counting me Functions = Adjusted Function |
Type of Scope and PointCount |
Count Application Determine Value I
Boundary Adjustment |
| Factor I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
L

Source: International Stardardization Organization ISO. ISO/IEC 20926:2009, IFPUG Functional Size
Measurement Method, 2009

Function Points Qyegor256

22/31

“The application boundary indicates
--------------------- . the border between the software
being measured and the user”

<

[SO. ISO/IEC 20926:2009, IFPUG Functional Size

Human Measurement Method, 2009

Resources
(Project being
counted)

l
Currency : Source: International Stardardization Organization

Lecccc=cccc=cccscs======a 1 Fixed

Function Points Qyegor256

Function Points

The 14 general system characteristics are:

e A o

e e
N = O

Data Communications
Distributed Data Processing
Performance

Heavily Used Configuration
Transaction Rate

Online Data Entry
End-User Efficiency

Online Update

Complex Processing

. Reusability

. Installation Ease
. Operational Ease
13.
14.

Multiple Sites
Facilitate Change

23/31

“The 14 general system
characteristics are summarized into
the value adjustment factor (VAF).
When applied, the value
adjustment factor adjusts the
unadjusted function point count
+35 percent to produce the
adjusted function point count.”

Source: International Stardardization Organization
[SO. ISO/IEC 20926:2009, IFPUG Functional Size
Measurement Method, 2009

Qyegor256

Function Points

Function Functional Complexity Function
Type Complexity Totals Type Totals
ILFs 4 Low X7= 28
0 Average X 10= 0
0 High X15= 0
28
EIFs 4 Low X5= 20
0 Average X7= 0
0 High X10= 0
20
Els 4 Low X3= 12
2 Average X4= 8
1 High X6= 6
26
EOs 4 Low X4= 16
2 Average X5= 10
0 High X7= 0
26
EQs 5 Low X3= 15
0 Average X4= 0
0 High X6= 0

Unadjusted Function Point Count

115

24/31

“The formula calculates the
development project function
points: DFP = (UFP + CFP) x
VAF. Where UFP is the unadjusted
function points for the functions
that will be available after
installation, and CFP is the
unadjusted function points added
by the conversion unadjusted
function point count.”

Source: International Stardardization Organization
[SO. ISO/IEC 20926:2009, IFPUG Functional Size
Measurement Method, 2009

Qyegor256

25/31

“The function point metric, like LOC, is relatively
controversial... Opponents claim that the method
requires some ‘sleight of hand’ in that computation
is based on subjective, rather than objective, data.”

— Roger S. Pressman and Bruce Maxim. Software Engineering: A Practitioner’s
Approach. McGraw Hill, 2014

Function Points Qyegor256

26/31

“Function Points and Function Counts (adjusted
FPs) can be used as predictors of KSLOC. In
particular, Function Counts correlated with KSLOC
at the level of 75.1 percent, which is similar to the
correlations published by Albrecht and Gaffney
[1983], and is likely to be good enough to be of use
to the software manager.”

— Chris F. Kemerer. An Empirical Validation of Software Cost Estimation
Models. Communications of the ACM, 30(5):416—-429, 1987.
doi:10.1145/22899.22906

Function Points Qyegor256

https://doi.org/10.1145/22899.22906

27/31

“Function point counts appear to be a more
consistent a priori measure of software size than
source lines of code. As such it is recommended that
function point estimates be used in preference to
lines of code estimates as the measure of system
size.”

— Graham C. Low and D. Ross Jeffery. Function Points in the Estimation and
Evaluation of the Software Process. IEEE Transactions on Software Engineering,
16(1):64-71, 1990. d0i:10.1109/32.44364

Function Points Qyegor256

https://doi.org/10.1109/32.44364

28/31

Function Point Standards

« Mark-1l — ISO/IEC 20968:2002
« IFPUG — ISO/IEC 20926:2009

« FISMA — ISO/IEC 29881:2010

« COSMIC — ISO/IEC 19761:2011
« Nesma — ISO/IEC 24570:2018

« OMG — ISO/IEC 19515:2019

Function Points Qyegor256

29/31

Some Other Function Points

- Early and easy function points
 Engineering function points

« Object-Oriented Function Points (OOFP)
« Weighted Micro Function Points

« Fuzzy Function Points

Function Points Qyegor256

Function Points

References

Allan J. Albrecht. Measuring Application
Development Productivity. In Proceedings of the

Joint SHARE, GUIDE, and IBM Application
Development Symposium, pages 83-92, 1979.

Allan J. Albrecht and John E. Gaffney. Software
Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering, (6):
639-648, 1983. doi:10.1109/tse.1983.235271.

Barry Boehm, Chris Abts, Winsor Brown, Sunita
Chulani, Bradford K. Clark, Ellis Horowitz, Ray
Madachy, Donald J. Reifer, and Steece Bert.
Software Cost Estimation With COCOMO II.
Englewood Cliffs, Prentice-Hall, 2000.
doi:10.5555/1795822.

Barry W. Boehm. Software Engineering Economics.
IEEE Transactions on Software Engineering, (1):
4-21, 1984. doi:10.1109/tse.1984.5010193.

Frederick P. Brooks Jr. The Mythical Man-Month:

Essays on Software Engineering. Pearson
Education, 1995. doi:10.5555/540031.

Peter Pin-Shan Chen. The Entity-Relationship Model
— Toward a Unified View of Data. ACM

30/31

Transactions on Database Systems, 1(1):9-36, 1976.

doi:10.1145/320434.320440.

Tom DeMarco. Structure Analysis and System
Specification. Prentice Hall, 1978.
d0i:10.1007/978-3-642-48354-7 9.

Daniel D. Galorath and Michael W. Evans. Software
Sizing, Estimation, and Risk Management: When
Performance Is Measured Performance Improves.
CRC Press, 2006. doi:10.1201/9781420013122.

International Stardardization Organization ISO.
ISO/IEC 20926:2009, IFPUG Functional Size
Measurement Method, 2009.

Capers Jones. Estimating Software Costs: Bringing
Realism to Estimating. McGraw-Hill, 2007.

Capers T. Jones. Foreword to IFPUG Functional Size
Measurement Method. 1SO/IEC 20926:2009, 2009.

Chris F. Kemerer. An Empirical Validation of

Qyegor256

https://doi.org/10.1109/tse.1983.235271
https://doi.org/10.5555/1795822
https://doi.org/10.1109/tse.1984.5010193
https://doi.org/10.5555/540031
https://doi.org/10.1145/320434.320440
https://doi.org/10.1007/978-3-642-48354-7_9
https://doi.org/10.1201/9781420013122

Function Points

Software Cost Estimation Models.
Communications of the ACM, 30(5):416-429, 1987.
doi:10.1145/22899.22906.

Graham C. Low and D. Ross Jeffery. Function Points
in the Estimation and Evaluation of the Software
Process. IEEE Transactions on Software
Engineering, 16(1):64-71, 1990.
doi:10.1109/32.44364.

Roger S. Pressman and Bruce Maxim. Software
Engineering: A Practitioner’s Approach. McGraw

31/31

Hill, 2014.

Lawrence H. Putnam. A General Empirical Solution
to the Macro Software Sizing and Estimating
Problem. IEEE Transactions on Software
Engineering, (4):345-361, 1978.
doi:10.1109/tse.1978.231521.

Charles R. Symons. Software Sizing and Estimating:

Mk Il FPA (Function Point Analysis). John Wiley &
Sons, Inc, 1991. doi:10.5555/120462.

Qyegor256

https://doi.org/10.1145/22899.22906
https://doi.org/10.1109/32.44364
https://doi.org/10.1109/tse.1978.231521
https://doi.org/10.5555/120462

