
Mutation Coverage

Yegor Bugayenko

Lecture #16 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=WYWSv_PucHc


2/26

Mutation Coverage @yegor256

Example, Part I: Code Coverage

Live Code:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Test Code:

1 assert fibonacci(2) == 1;
2 assert fibonacci(3) > 0;

CLine = 7/7 = 100%

CStatement = 6/6 = 100%

CBranch = 2/2 = 100%

CCondition = 2/2 = 100%



3/26

Mutation Coverage @yegor256

Example, Part II: Mutation Coverage

Live Code:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Test Code:

1 assert fibonacci(2) == 1;
2 assert fibonacci(3) > 0;

Mutant #1:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 2)
6 + fibonacci(n - 2);
7 }

Mutant #2:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 * fibonacci(n - 2);
7 }

CMutants = 0/2 = 0%



4/26

Mutation Coverage @yegor256

Some Mutation Operators

• Statement deletion

• Statement duplication or insertion

• Replacement of boolean subexpressions with TRUE and FALSE

• Replacement of some arithmetic operations, e.g. + to *, - to /

• Replacement of some boolean relations, e.g. > to >=, == to <=

• Replacement of variables with others from the same scope

• Remove method body



5/26

Mutation Coverage @yegor256

Richard G. Hamlet

“It is a truism that good software is easy to

maintain.”

— Richard G. Hamlet. Testing Programs With the Aid of a Compiler. IEEE
Transactions on Software Engineering, 1997. doi:10.1109/tse.1977.231145

https://doi.org/10.1109/tse.1977.231145


6/26

Mutation Coverage @yegor256

Richard J. Lipton

“Our groups at Yale University and the Georgia

Institute of Technology have constructed a system

whereby we can determine the extent to which a

given set of test data has adequately tested a Fortran

program by direct measurement of the number and

kinds of errors it is capable of uncovering.”

— Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on
Test Data Selection: Help for the Practicing Programmer. Computer, 11(4):
34–41, 1978. doi:10.1109/c-m.1978.218136

https://doi.org/10.1109/c-m.1978.218136


7/26

Mutation Coverage @yegor256

“A test set is adequate if it can distinguish the

subject program from a collection of similar

programs, called mutants, obtained by making small

syntactic modifications to the subject program.”

— Timothy A. Budd. Mutation Analysis: Ideas, Examples, Problems and
Prospects. 1981



8/26

Mutation Coverage @yegor256

“In weak mutation testing method, tests are

constructed which are guaranteed to force program

statements which contain certain classes of errors to

act incorrectly during the execution of the program

over those tests.”

— William E. Howden. Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, (4):371–379, 1982.
doi:10.1109/tse.1982.235571

https://doi.org/10.1109/tse.1982.235571


9/26

Mutation Coverage @yegor256

Weak vs. Strong Mutation Testing

Live Code:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Mutant:

1 int fibonacci(int n) {
2 if (n <= 1) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Tests Suite:

1 fibonacci(10) == 55;
2 fibonacci(11) == 89;
3 fibonacci(12) == 144;



10/26

Mutation Coverage @yegor256

Jeff Offutt

“Our results indicate that weak mutation can be

applied in a manner that is almost as effective as

mutation testing, and with significant

computational savings.”

— A. Jefferson Offutt and Stephen D. Lee. An Empirical Evaluation of Weak
Mutation. IEEE Transactions on Software Engineering, 20(5):337–344, 1994.
doi:10.1109/32.286422

https://doi.org/10.1109/32.286422


11/26

Mutation Coverage @yegor256

Richard DeMillo

“A mutant operator mutates one syntactic entity of

a program. Further, only one mutant operator is

applied at a time to the program under test.”

— Hiralal Agrawal, Richard A. DeMillo, R. Hathaway, William Hsu, Wynne
Hsu, Edward W. Krauser, Rhonda J. Martin, Aditya P. Mathur, and Eugene
Spafford. Design of Mutant Operators for the C Programming Language, 1989



12/26

Mutation Coverage @yegor256

“Each mutant operator belongs to

one of the following categories:

1) statement mutations, 2) operator

mutations, 3) variable mutations,

and 4) constant mutations. ”

Source: Hiralal Agrawal et al., Design of Mutant
Operators for the C Programming Language, Technical
Report SERC-TR-41-P, Software Engineering

Research Center, Purdue University, 1989



13/26

Mutation Coverage @yegor256

Phyllis G. Frankl

“Those mutants that compute precisely the same

function are called equivalent mutants and the

others are called inequivalent mutants.”

— Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-Uses vs Mutation
Testing: An Experimental Comparison of Effectiveness. Journal of Systems and
Software, 38(3):235–253, 1997. doi:10.1016/s0164-1212(96)00154-9

https://doi.org/10.1016/s0164-1212(96)00154-9


14/26

Mutation Coverage @yegor256

Equivalent Mutants, Example

Live Code:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 1)
6 + fibonacci(n - 2);
7 }

Tests:

1 fibonacci(2) == 1;
2 fibonacci(14) == 377;

Inequivalent Mutant:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n + 1)
6 + fibonacci(n - 2);
7 }

Equivalent Mutant:

1 int fibonacci(int n) {
2 if (n <= 2) {
3 return 1;
4 }
5 return fibonacci(n - 2)
6 + fibonacci(n - 1);
7 }

↑ You can’t kill this one!



15/26

Mutation Coverage @yegor256

Source: Phyllis G. Frankl, Stewart N. Weiss, and Cang

Hu. All-Uses vs Mutation Testing: An Experimental

Comparison of Effectiveness. Journal of Systems and
Software, 38(3):235–253, 1997.
doi:10.1016/s0164-1212(96)00154-9

“Mutation coverage is more

effective than dua coverage for five

subjects, dua coverage — for two

others, and there is no significant

difference for the remaining two.

A definition-use association (dua is

a triple d, u, v, such that d is a node

in the program’s flow graph in

which variable v is defined, u is a

node or edge in which v is used,

and there is a definition-clear path

with respect to v from d to u.”

https://doi.org/10.1016/s0164-1212(96)00154-9


16/26

Mutation Coverage @yegor256

Lionel C. Briand

“Our analysis suggests that mutants, when using

carefully selected mutation operators and after

removing equivalent mutants, can provide a good

indication of the fault detection ability of a test

suite.”

— James H. Andrews, Lionel C. Briand, and Y. Labiche. Is Mutation an
Appropriate Tool for Testing Experiments? In Proceedings of the 27th
International Conference on Software Engineering (ICSE), 2005.
doi:10.1145/1062455.1062530

https://doi.org/10.1145/1062455.1062530


17/26

Mutation Coverage @yegor256

“Average differences range from 6%

to 34%, with an average of 22%.

If one has used mutants to assess a

test technique, it will likely look

more effective at detecting faults

than if one has used the seeded

faults.”

Source: James H. Andrews, Lionel C. Briand and Yvan

Labiche, Is Mutation an Appropriate Tool for Testing
Experiments?, Proceedings of the 27th International

Conference on Software Engineering (ICSE), 2005



18/26

Mutation Coverage @yegor256

Yu-Seung Ma

“Comparing with previous mutation systems for

procedural programs, MuJava is very fast. However,

it is relatively slow when it generates and runs lots

of mutants.”

— Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: A Mutation System
for Java. In Proceedings of the 28th International Conference on Software
Engineering (ICSE), 2006. doi:10.1145/1134285.1134425

https://doi.org/10.1145/1134285.1134425


19/26

Mutation Coverage @yegor256

“Method-level mutation operators

handle primitive features of

programming languages. They

modify expressions by replacing,

deleting, and inserting primitive

operators. Class-level mutation

operators handle object-oriented

specific features such as

inheritance, polymorphism and

dynamic binding.”

Source: Yu-Seung Ma, Jeff Offutt, and Yong-Rae

Kwon, MuJava: A Mutation System for Java,
Proceedings of the 28th International Conference on

Software Engineering (ICSE), 2006



20/26

Mutation Coverage @yegor256

Paul Ammann

“Three conditions must be present for a failure to be

observed: 1) The location in the program that

contains the fault must be reached (Reachability).
2) After executing the location, the state of the

program must be incorrect (Infection). 3) The
infected state must propagate to cause some output

of the program to be incorrect (Propagation).”

— Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, 2008. doi:10.5555/1355340

https://doi.org/10.5555/1355340


21/26

Mutation Coverage @yegor256

Mark Harman

“Traditional mutation testing considers only first

order mutants, created by the injection of a single

fault. Often these first order mutants denote trivial

faults that are easily killed. Higher order mutants

are created by the insertion of two or more faults.”

— Yue Jia and Mark Harman. Higher Order Mutation Testing. Information and
Software Technology, 2009. doi:10.1016/j.infsof.2009.04.016

https://doi.org/10.1016/j.infsof.2009.04.016


22/26

Mutation Coverage @yegor256

Yue Jia

“One problem that prevents mutation testing from

becoming a practical testing technique is the high

computational cost of executing the enormous

number of mutants against a test set.”

— Yue Jia and Mark Harman. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering, 2010.
doi:10.1109/tse.2010.62

https://doi.org/10.1109/tse.2010.62


23/26

Mutation Coverage @yegor256

Jie Zhang

“PMT applies ML to build a predictive model by

collecting a series of easy-to-access features (e.g.,

coverage and mutation operator) on already

executed mutants of earlier versions of the project.

Based on this model, PMT predicts the mutation

testing results (i.e., whether each mutant is killed or

not) of a new version of project without executing

its mutants at all.”

— Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng,
and Lu Zhang. Predictive Mutation Testing. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016.
doi:10.1145/2931037.2931038

https://doi.org/10.1145/2931037.2931038


24/26

Mutation Coverage @yegor256

Mutation Coverage can be calculated by a few tools:

• PIT for Java

• StrykerJS for JavaScript

•Mutate++ for C++

•mutatest for Python

•mutant for Ruby

https://pitest.org/
https://github.com/stryker-mutator/stryker-js
https://github.com/nlohmann/mutate_cpp
https://github.com/EvanKepner/mutatest
https://github.com/mbj/mutant


25/26

Mutation Coverage @yegor256

References
Hiralal Agrawal, Richard A. DeMillo, R. Hathaway,

William Hsu, Wynne Hsu, Edward W. Krauser,

Rhonda J. Martin, Aditya P. Mathur, and Eugene

Spafford. Design of Mutant Operators for the C

Programming Language, 1989.

Paul Ammann and Jeff Offutt. Introduction to
Software Testing. Cambridge University Press,

2008. doi:10.5555/1355340.

James H. Andrews, Lionel C. Briand, and Y. Labiche.

Is Mutation an Appropriate Tool for Testing

Experiments? In Proceedings of the 27th
International Conference on Software Engineering
(ICSE), 2005. doi:10.1145/1062455.1062530.

Timothy A. Budd. Mutation Analysis: Ideas,

Examples, Problems and Prospects. 1981.

Richard A. DeMillo, Richard J. Lipton, and

Frederick G. Sayward. Hints on Test Data

Selection: Help for the Practicing Programmer.

Computer, 11(4):34–41, 1978.

doi:10.1109/c-m.1978.218136.

Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu.

All-Uses vs Mutation Testing: An Experimental

Comparison of Effectiveness. Journal of Systems
and Software, 38(3):235–253, 1997.
doi:10.1016/s0164-1212(96)00154-9.

Richard G. Hamlet. Testing Programs With the Aid of

a Compiler. IEEE Transactions on Software
Engineering, 1997. doi:10.1109/tse.1977.231145.

William E. Howden. Weak Mutation Testing and

Completeness of Test Sets. IEEE Transactions on
Software Engineering, (4):371–379, 1982.
doi:10.1109/tse.1982.235571.

Yue Jia and Mark Harman. Higher Order Mutation

Testing. Information and Software Technology,
2009. doi:10.1016/j.infsof.2009.04.016.

Yue Jia and Mark Harman. An Analysis and Survey

of the Development of Mutation Testing. IEEE
Transactions on Software Engineering, 2010.
doi:10.1109/tse.2010.62.

Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon.

https://doi.org/10.5555/1355340
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1109/c-m.1978.218136
https://doi.org/10.1016/s0164-1212(96)00154-9
https://doi.org/10.1109/tse.1977.231145
https://doi.org/10.1109/tse.1982.235571
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/tse.2010.62


26/26

Mutation Coverage @yegor256

MuJava: A Mutation System for Java. In

Proceedings of the 28th International Conference on
Software Engineering (ICSE), 2006.
doi:10.1145/1134285.1134425.

A. Jefferson Offutt and Stephen D. Lee. An Empirical

Evaluation of Weak Mutation. IEEE Transactions
on Software Engineering, 20(5):337–344, 1994.

doi:10.1109/32.286422.

Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei

Zang, Shiyang Cheng, and Lu Zhang. Predictive

Mutation Testing. In Proceedings of the 25th
International Symposium on Software Testing and
Analysis, 2016. doi:10.1145/2931037.2931038.

https://doi.org/10.1145/1134285.1134425
https://doi.org/10.1109/32.286422
https://doi.org/10.1145/2931037.2931038

