Mutation Coverage

YEGOR BUGAYENKO

Lecture #16 out of 24
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=WYWSv_PucHc

2/26

Example, Part I: Code Coverage

Live Code: Test Code:
1|int fibonacci(int n) { i|lassert fibonacci(2) == 1;
ol if (n <= 2) { »lassert fibonacci(3) > 0;
3 return 1;
o Cline = 7/7 = 100%
5| return fibonacci(n - 1)
6 + fibonacci(n - 2); Cstatenens = 0/6 = 100%
7|}

CBranch — 2/2 = 100%
CVCondition — 2/2 — 100%

Mutation Coverage Qyegor256

3/26

Example, Part Il: Mutation Coverage

Live Code: Mutant #1: Mutant #2:
1lint fibonacci(int n) { 1lint fibonacci(int n) { 1lint fibonacci(int n) {
o if (n <= 2) { o if (n <= 2) { o if (n <= 2) A
3 return 1; 3 return 1; 3 return 1;
s} s} s }
s| return fibonacci(n - 1) s| return fibonacci(n - 2) s| return fibonacci(n - 1)
6 + fibonacci(n - 2); 6 + fibonacci(n - 2); 6 * fibonacci(n - 2);
7|} 71} 7|}

i lassert fibonacci(2) == 1;
»|lassert fibonacci(3) > 0;

Mutation Coverage Qyegor256

4/26

Some Mutation Operators

. Statement deletion

« Statement duplication or insertion

 Replacement of boolean subexpressions with TRUE and FALSE
« Replacement of some arithmetic operations, e.g. + to *, - to /
 Replacement of some boolean relations, e.g. > to >=, == to <=
 Replacement of variables with others from the same scope

« Remove method body

Mutation Coverage Qyegor256

5/26

“It is a truism that good software is easy to
maintain.”

— Richard G. Hamlet. Testing Programs With the Aid of a Compiler. IEEE
Transactions on Software Engineering, 1997. doi:10.1109/tse.1977.231145

RicHARD G. HAMLET

Mutation Coverage Qyegor256

https://doi.org/10.1109/tse.1977.231145

Mutation Coverage

RICHARD J. LiPTON

“Our groups at Yale University and the Georgia
Institute of Technology have constructed a system
whereby we can determine the extent to which a
given set of test data has adequately tested a Fortran
program by direct measurement of the number and
kinds of errors it is capable of uncovering.”

— Richard A. DeMillo, Richard J. Lipton, and Frederick G. Sayward. Hints on
Test Data Selection: Help for the Practicing Programmer. Computer, 11(4):
34-41, 1978. d0i:10.1109/c-m.1978.218136

6/26

Qyegor256

https://doi.org/10.1109/c-m.1978.218136

/26

“A test set is adequate if it can distinguish the
subject program from a collection of similar
programs, called mutants, obtained by making small
syntactic modifications to the subject program.”

B¢ — Timothy A. Budd. Mutation Analysis: Ideas, Examples, Problems and
Prospects. 1981

Mutation Coverage Qyegor256

8/26

“In weak mutation testing method, tests are
constructed which are guaranteed to force program
statements which contain certain classes of errors to
act incorrectly during the execution of the program
over those tests.”

— William E. Howden. Weak Mutation Testing and Completeness of Test Sets.
IEEE Transactions on Software Engineering, (4):371-379, 1982.
doi:10.1109/tse.1982.235571

Mutation Coverage Qyegor256

https://doi.org/10.1109/tse.1982.235571

Mutation

9/26

Weak vs. Strong Mutation Testing

Live Code:

int fibonacci(int n) {
if (n <= 2) {
return 1;

¥

return fibonacci(n - 1)
+ fibonacci(n - 2);

Coverage

Mutant: Tests Suite:
int fibonacci(int n) A |[fibonacci(10) == 55;
if (n <=1) { »|fibonacci(11l) == 89;
return 1; ;|fibonacci(12) == 144;
}

return fibonacci(n - 1)
+ fibonacci(n - 2);

Qyegor256

10/26

“Our results indicate that weak mutation can be
applied in a manner that is almost as effective as
mutation testing, and with significant
computational savings.”

— A. Jefferson Offutt and Stephen D. Lee. An Empirical Evaluation of Weak
Mutation. IEEE Transactions on Software Engineering, 20(5):337-344, 1994.
d0i:10.1109/32.286422

JEFF OFFUTT

Mutation Coverage Qyegor256

https://doi.org/10.1109/32.286422

11/26

“A mutant operator mutates one syntactic entity of
a program. Further, only one mutant operator is
applied at a time to the program under test.”

— Hiralal Agrawal, Richard A. DeMillo, R. Hathaway, William Hsu, Wynne
Hsu, Edward W. Krauser, Rhonda J. Martin, Aditya P. Mathur, and Eugene
Spafford. Design of Mutant Operators for the C Programming Language, 1989

RicHARD DEMILLO

Mutation Coverage Qyegor256

List of Mutant Operators for ANSI C

Operator Domain Description Page
CGCR Constants Constant replacement using global constants 63
CLSR Constants Constant for scalar replacement using local 63
constants
CGSR Constants Constant for scalar replacement using global 63
constants
CRCR Constants Required constant replacement 62
CLCR Constants Constant replacement using local constants 63
OAAA i arithmetic assignment mutation 49
OAAN i arithmetic operator mutation 49
OABA i arithmetic assignment by bitwise assignment 50
OABN i arithmetic operator by bitwise operator 50
OAEA f arithmetic assignment by plain assignment 50
OALN i arithmetic operator by logical operator 50
OARN i arithmetic operator by relational operator 50
OASA i arithmetic assignment by shift assignment 50
OASN i Arithmetic operator by shift operator 50
OBAA i Bitwise assignment by arithmetic assignment 50
OBAN i Bitwise operator by arithmetic assignment 50
OBBA i Bitwise assignment mutation 49
OBBN i Bitwise operator mutation 49
OBEA i Bitwise assignment by plain assignment 50
OBLN i Bitwise operator by logical operator 50
OBNG i Bitwise negation 52
OBRN i Bitwise operator by relational operator 50
OBSA t Bitwise assignment by shift assignment 50
OBSN i Bitwise operator by shift operator 50
OCOR Casts Cast operator by cast operator 53
OEAA f Plain assignment by arithmetic assignment 50
OEBA i Plain assignment by bitwise assignment 50
OESA ¥ Plain assignment by shift assignment 50

Mutation Coverage

12/26

“Each mutant operator belongs to
one of the following categories:

1) statement mutations, 2) operator
mutations, 3) variable mutations,
and 4) constant mutations. ”

Source: Hiralal Agrawal et al., Design of Mutant
Operators for the C Programming Language, Technical

Report SERC-TR-41-P, Software Engineering
Research Center, Purdue University, 1989

Qyegor256

13/26

“Those mutants that compute precisely the same
function are called equivalent mutants and the
others are called inequivalent mutants.”

— Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu. All-Uses vs Mutation
Testing: An Experimental Comparison of Effectiveness. Journal of Systems and
Software, 38(3):235-253, 1997. do0i:10.1016/s0164-1212(96)00154-9

PHyLLIS G. FRANKL

Mutation Coverage Qyegor256

https://doi.org/10.1016/s0164-1212(96)00154-9

14/26

Equivalent Mutants, Example

Live Code: Inequivalent Mutant: Equivalent Mutant:
1lint fibonacci(int n) A 1 lint fibonacci(int n) { 1 lint fibonacci(int n) {
| if (o <= 2) Ao | if (oo <= 2) { o if (n<=2) A
3 return 1; 3 return 1; 3 return 1;
4 } 4 + 4 Iy
5| return fibonacci(n - 1) s| return fibonacci(n + 1) 5| return fibonacci(n - 2)
6 + fibonacci(n - 2); i + fibonacci(n - 2); 6 + fibonacci(n - 1);
7|} 71} 7|}
Tests: 1 You can’t kill this one!

i [fibonacci(2) == 1;
»|fibonacci(14) == 377;

Mutation Coverage Qyegor256

Mutation Coverage

inequiv exec failure
subject LOC mutants duas mutants duas rate

4489 298 4123 103 0.0008
932 114 836 93 0.066

determinant 60
findl 33

find2 33 932 114 859 93 0.018
matinvl 60 4303 298 3971 106 0.012
matinv2 28 1267 81 1145 62 0.014
strmatchl 22 398 49 356 49 (0.032
strmatch2 23 402 56 361 54 0.062
textformat.0 26 976 50 905 42 (.066
textformat.r 26 976 50 976 42 0.066

transpose 78 5358 97 4595 88 0.023

Source: Phyllis G. Frankl, Stewart N. Weiss, and Cang
Hu. All-Uses vs Mutation Testing: An Experimental
Comparison of Effectiveness. Journal of Systems and
Software, 38(3):235-253, 1997.
doi:10.1016/s0164-1212(96)00154-9

“Mutation coverage is more
effective than dua coverage for five
subjects, dua coverage — for two
others, and there is no significant
difference for the remaining two.

A definition-use association (dua is
a triple d, u, v, such that d is a node
in the program’s flow graph in
which variable v is defined, u is a
node or edge in which v is used,
and there is a definition-clear path
with respect to v from d to u.”

15/26

Qyegor256

https://doi.org/10.1016/s0164-1212(96)00154-9

16/26

“Our analysis suggests that mutants, when using
carefully selected mutation operators and after
removing equivalent mutants, can provide a good

indication of the fault detection ability of a test
suite.”

— James H. Andrews, Lionel C. Briand, and Y. Labiche. Is Mutation an
Appropriate Tool for Testing Experiments? In Proceedings of the 27th

International Conference on Software Engineering (ICSE), 2005.
doi:10.1145/1062455.1062530

LioNEL C. BRIAND

Mutation Coverage

Qyegor256

https://doi.org/10.1145/1062455.1062530

Mutation Coverage

Table 3. Matched Pairs #-test Results — test suite size =100

Matched Pairs Results

Subject Mean .

Programs AR(S) — Am(S) t-ratio p-value
Space 0.014 16.87 <0.0001
Replace -0.266 -233.96 0.0000

Printtokens -0.344 -158.2 0.0000

Printtokens2 -0.061 -59.39 0.0000

Schedule -0.298 -161.33 0.0000

Schedule2 -0.327 -152.19 0.0000

Tcas -0.1128 -57.56 0.0000

Totinfo -0.1037 -145.78 0.0000

“Average differences range from 6%
to 34%, with an average of 22%.

If one has used mutants to assess a
test technique, it will likely look
more effective at detecting faults
than if one has used the seeded

Source: James H. Andrews, Lionel C. Briand and Yvan
Labiche, Is Mutation an Appropriate Tool for Testing
Experiments?, Proceedings of the 27th International
Conference on Software Engineering (ICSE), 2005

17/26

Qyegor256

18/26

“Comparing with previous mutation systems for
procedural programs, Mujava is very fast. However,
it is relatively slow when it generates and runs lots
of mutants.”

— Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon. MuJava: A Mutation System
for Java. In Proceedings of the 28th International Conference on Software
Engineering (ICSE), 2006. do0i:10.1145/1134285.1134425

Yu-SEUNG MA

Mutation Coverage Qyegor256

https://doi.org/10.1145/1134285.1134425

Operator

Description

IHD

Hiding variable deletion

THI

Hiding variable insertion

10D

Overriding method deletion

10P

Overridden method calling position change

IOR

Overridden method rename

ISI

super keyword insertion

ISD

super keyword deletion

IPC

Explicit call of a parent’s constructor deletion

PNC

new method call with child class type

PMD

Instance variable declaration with parent class type

PPD

Parameter variable declaration with child class type

PCI

Type cast operator insertion

PCC

Cast type change

PCD

Type cast operator insertion

PRV

Reference assignment with other compatible type

OMR

Overloading method contents change

OMD

Overloading method deletion

OAC

Argument order change

JTI

this keyword insertion

JTD

this keyword deletion

JSI

static modifier insertion

JSD

static modifier deletion

JID

Member variable initialization deletion

JDC

Java-supported default constructor create

EOA

Reference and content assignment replacement

EOC

Reference and content assignment replacement

EAM

Accessor method change

EMM

Modifier method change

Table 2: Class-level Mutation Operators for Java

Mutation Coverage

“Method-level mutation operators
handle primitive features of
programming languages. They
modify expressions by replacing,
deleting, and inserting primitive
operators. Class-level mutation
operators handle object-oriented
specific features such as
inheritance, polymorphism and

dynamic binding.”

Source: Yu-Seung Ma, Jeff Offutt, and Yong-Rae
Kwon, Mujava: A Mutation System for Java,
Proceedings of the 28th International Conference on

Software Engineering (ICSE), 2006

19/26

Qyegor256

20/26

“Three conditions must be present for a failure to be
observed: 1) The location in the program that
contains the fault must be reached (Reachability).
2) After executing the location, the state of the

| program must be incorrect (Infection). 3) The

| infected state must propagate to cause some output
of the program to be incorrect (Propagation).”

" — Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, 2008. doi:10.5555/1355340

PAuL AMMANN

Mutation Coverage Qyegor256

https://doi.org/10.5555/1355340

21/26

“Traditional mutation testing considers only first
order mutants, created by the injection of a single
fault. Often these first order mutants denote trivial
faults that are easily killed. Higher order mutants
are created by the insertion of two or more faults.”

— Yue Jia and Mark Harman. Higher Order Mutation Testing. Information and
Software Technology, 2009. d0i:10.1016/j.infsof.2009.04.016

MARK HARMAN

Mutation Coverage Qyegor256

https://doi.org/10.1016/j.infsof.2009.04.016

22/26

“One problem that prevents mutation testing from
becoming a practical testing technique is the high
computational cost of executing the enormous
number of mutants against a test set.”

— Yue Jia and Mark Harman. An Analysis and Survey of the Development of
Mutation Testing. IEEE Transactions on Software Engineering, 2010.
doi:10.1109/tse.2010.62

Mutation Coverage Qyegor256

https://doi.org/10.1109/tse.2010.62

23/26

“PMT applies ML to build a predictive model by
| collecting a series of easy-to-access features (e.g.,
coverage and mutation operator) on already
executed mutants of earlier versions of the project.
Based on this model, PMT predicts the mutation
testing results (i.e., whether each mutant is killed or
not) of a new version of project without executing
its mutants at all.”

JIE ZHANG

— Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei Zang, Shiyang Cheng,
and Lu Zhang. Predictive Mutation Testing. In Proceedings of the 25th
International Symposium on Software Testing and Analysis, 2016.
doi:10.1145/2931037.2931038

Mutation Coverage Qyegor256

https://doi.org/10.1145/2931037.2931038

24/26

Mutation Coverage can be calculated by a few tools:

o PIT for Java

- Stryker]S for JavaScript

o« Mutate++ for C++

- mutatest for Python

- mutant for Ruby

Mutation Coverage Qyegor256

https://pitest.org/
https://github.com/stryker-mutator/stryker-js
https://github.com/nlohmann/mutate_cpp
https://github.com/EvanKepner/mutatest
https://github.com/mbj/mutant

Mutation Coverage

References

Hiralal Agrawal, Richard A. DeMillo, R. Hathaway,
William Hsu, Wynne Hsu, Edward W. Krauser,
Rhonda J. Martin, Aditya P. Mathur, and Eugene
Spafford. Design of Mutant Operators for the C
Programming Language, 19809.

Paul Ammann and Jeff Offutt. Introduction to
Software Testing. Cambridge University Press,
2008. doi:10.5555/1355340.

James H. Andrews, Lionel C. Briand, and Y. Labiche.

Is Mutation an Appropriate Tool for Testing
Experiments? In Proceedings of the 27th
International Conference on Software Engineering
(ICSE), 2005. doi:10.1145/1062455.1062530.

Timothy A. Budd. Mutation Analysis: Ideas,
Examples, Problems and Prospects. 1981.

Richard A. DeMillo, Richard). Lipton, and
Frederick G. Sayward. Hints on Test Data
Selection: Help for the Practicing Programmer.
Computer, 11(4):34-41, 1978.

doi:10.1109/c-m.1978.218136.

Phyllis G. Frankl, Stewart N. Weiss, and Cang Hu.
All-Uses vs Mutation Testing: An Experimental
Comparison of Effectiveness. Journal of Systems
and Software, 38(3):235-253, 1997.
d0i:10.1016/50164-1212(96)00154-9.

Richard G. Hamlet. Testing Programs With the Aid of
a Compiler. IEEE Transactions on Software
Engineering, 1997. doi:10.1109/tse.1977.231145.

William E. Howden. Weak Mutation Testing and
Completeness of Test Sets. IEEE Transactions on
Software Engineering, (4):371-379, 1982.
doi:10.1109/tse.1982.235571.

Yue Jia and Mark Harman. Higher Order Mutation
Testing. Information and Software Technology,
2009. doi:10.1016/j.infsof.2009.04.016.

Yue Jia and Mark Harman. An Analysis and Survey
of the Development of Mutation Testing. IEEE
Transactions on Software Engineering, 2010.
doi:10.1109/tse.2010.62.

Yu-Seung Ma, Jeff Offutt, and Yong-Rae Kwon.

25/26

Qyegor256

https://doi.org/10.5555/1355340
https://doi.org/10.1145/1062455.1062530
https://doi.org/10.1109/c-m.1978.218136
https://doi.org/10.1016/s0164-1212(96)00154-9
https://doi.org/10.1109/tse.1977.231145
https://doi.org/10.1109/tse.1982.235571
https://doi.org/10.1016/j.infsof.2009.04.016
https://doi.org/10.1109/tse.2010.62

26/26

Mujava: A Mutation System for Java. In doi:10.1109/32.286422.
Proceedings of the 28th International Conference on

Jie Zhang, Ziyi Wang, Lingming Zhang, Dan Hao, Lei
Software Engineering (ICSE), 2006. Zang, Shiyang Cheng, and Lu Zhang. Predictive
doi:10.1145/1134285.1134425. Mutation Testing. In Proceedings of the 25th

A. Jefferson Offutt and Stephen D. Lee. An Empirical International Symposium on Software Testing and
Evaluation of Weak Mutation. /IEEE Transactions Analysis, 2016. doi:10.1145/2931037.2931038.
on Software Engineering, 20(5):337-344, 1994.

Mutation Coverage Qyegor256

https://doi.org/10.1145/1134285.1134425
https://doi.org/10.1109/32.286422
https://doi.org/10.1145/2931037.2931038

