
Code Coverage

Yegor Bugayenko

Lecture #15 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=pJrXQ5rptig


2/26

Code Coverage @yegor256

Example, Part I

Live Code:

1 int fibonacci(int n) {
2 if (n <= 0) {
3 return 0;
4 }
5 if (n <= 2) {
6 return 1;
7 }
8 return fibonacci(n-1)
9 + fibonacci(n-2);
10 }

Test Code:

1 assert fibonacci(1) == 1;
2 assert fibonacci(2) == 1;

C = 7/10 = 70%



3/26

Code Coverage @yegor256

Example, Part II

Live Code:

1 int fibonacci(int n) {
2 if (n <= 0) {
3 return 0;
4 }
5 if (n <= 2) {
6 return 1;
7 }
8 return fibonacci(n-1)
9 + fibonacci(n-2);
10 }

Test Code:

1 assert fibonacci(1) == 1;
2 assert fibonacci(2) == 1;
3

4 assert fibonacci(9) == 34;
5 assert fibonacci(10) == 55;

C = 9/10 = 90%



4/26

Code Coverage @yegor256

Some Kinds of Code Coverage

• Line Coverage
• Statement Coverage

• Branch Coverage

• Condition Coverage

• Function Coverage

• Linear Code Sequence and Jump (LCSAJ) Coverage

•Modified Condition / Decision Coverage (MC/DC)



5/26

Code Coverage @yegor256

Four Kinds of Coverage

Live Code:

1 int foo(int x) {
2 if (x < 0) { return x; }
3 if (x > 10 || x == 0) {
4 return 42 / x;
5 } else {
6 return 1;
7 }
8 }

Test Code:

1 assert foo(1) == 1;
2 assert foo(50) == 42;

Cline = 6/6 = 100%

Cstatement = 5/6 = 83%

Cbranch = 3/4 = 75%

Ccondition = 3/5 = 60%



6/26

Code Coverage @yegor256

William Robert Elmendorf

“A disciplined test control process is composed of

five steps: 1) establish the intended extent of testing;

2) create a list of functional variations eligible for

testing; 3) rank and subset the eligible variations so

that test resources can be directed at those with the

higher payoff; 4) calculate the test coverage of the

test case library; and 5) verify attainment of the

planned test coverage.”

— William Robert Elmendorf. Controlling the Functional Testing of an
Operating System. IEEE Transactions on Systems Science and Cybernetics, 1969.
doi:10.1109/tssc.1969.300221

https://doi.org/10.1109/tssc.1969.300221


7/26

Code Coverage @yegor256

David Gelperin

“However, only half regularly document their test

designs, only half regularly save their tests for reuse

after software changes, and an extremely small five

percent provide regular measurements of code

coverage.”

— D. Gelperin and B. Hetzel. The Growth of Software Testing. Communications
of the ACM, 1988. doi:10.1145/62959.62965

https://doi.org/10.1145/62959.62965


8/26

Code Coverage @yegor256

“We note an inconsistency. A high

percentage of the respondents felt

that the testing in their

organization was a systematic and

organized activity (91% answered

either “yes” or “sometimes” to this

practice). However, [...] an

extremely small 5% provide regular

measurements of code coverage.”

— The Growth of Software Testing, David Gelperin and

Bill Hetzel, Communications of the ACM, 31(6), 1988



9/26

Code Coverage @yegor256

Boris Beizer

“Junky software takes more tests to achieve

coverage, but it breaks under any systematic test.”

— Boris Beizer. Black Box Testing. ACM, 1995. doi:10.5555/202699

https://doi.org/10.5555/202699


10/26

Code Coverage @yegor256

Brian Marick

“Coverage numbers (like many numbers) are

dangerous because they’re objective but incomplete.

They too often distort sensible action. Using them in

isolation is as foolish as hiring based only on GPA.”

— Brian Marick. How to Misuse Code Coverage. In Proceedings of the 16th
Interational Conference on Testing Computer Software, 1997



11/26

Code Coverage @yegor256

Martin Fowler

“I would be suspicious of anything like 100% — it

would smell of someone writing tests to make the

coverage numbers happy, but not thinking about

what they are doing.”

— Martin Fowler. Continuous Integration.
https://martinfowler.com/bliki/TestCoverage.html, 1997. [Online;
accessed 17-03-2024]

https://martinfowler.com/bliki/TestCoverage.html


12/26

Code Coverage @yegor256

Cem Kaner

“As you get near 100 percent line coverage, that

doesn’t tell you the product is near release. It just

tells you that the product is no longer obviously far

from release according to this measure.”

— Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software
Testing: A Context-Driven Approach. Wiley, 2002



13/26

Code Coverage @yegor256

Pavneet Singh Kochhar,

David Lo, Julia Lawall,

Nachiappan Nagappan

“Our results show that coverage has an insignificant

correlation with the number of bugs that are found

after the release of the software at the project level,

and no such correlation at the file level.”

— Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability, 2017. doi:10.1109/tr.2017.2727062

https://doi.org/10.1109/tr.2017.2727062


14/26

Code Coverage @yegor256

Goran Petrović

“Google does not enforce any code coverage

thresholds across the entire codebase. Projects (or

groups of projects) are free to define their own

thresholds and goals. Many projects opt-into a

centralized voluntary alerting system that defines

five levels of code coverage thresholds.”

— Goran Petrović, Marko Ivanković, René Just, and Gordon Fraser. Code
Coverage at Google. In Proceedings of the 27th Joint Meeting on ESEC/FSE, 2019.
doi:10.1145/3338906.3340459

https://doi.org/10.1145/3338906.3340459


15/26

Code Coverage @yegor256

Code Coverage Threshold Levels in Google



16/26

Code Coverage @yegor256

Adam Bender

“Code coverage does not guarantee that the covered

lines or branches have been tested correctly, it just

guarantees that they have been executed by a test.

But a low code coverage number does guarantee

that large areas of the product are going completely

untested by automation on every single

deployment.”

— Carlos Arguelles, Marko Ivanković, and Adam Bender. Code Coverage Best
Practices. https://testing.googleblog.com/2020/08/code-coverage-
best-practices.html, 2020. [Online; accessed 15-03-2024]

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html


17/26

Code Coverage @yegor256

“Many contracts are specifying that a certain

percentage of the statements or instructions must

be successfully executed before the acceptance of

the software by the customer.”

— John B. Bowen. A Survey of Standards and Proposed Metrics for Software
Quality Testing. Computer, 12(8):37–42, 1979. doi:10.1109/mc.1979.1658854

https://doi.org/10.1109/mc.1979.1658854


18/26

Code Coverage @yegor256

Industry Standards that Require Code Coverage

• ISO-26262: “Road Vehicles” functional safety (Switzerland)

• IEC 61508: “Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems” (UK)

•DO-178C: “Software Considerations in Airborne Systems and

Equipment Certification” (USA)

• IEC 62304: “Medical Device Software” (UK)



19/26

Code Coverage @yegor256

ISO-26262:

IEC 61508:

DO-178C:

IEC 62304:



20/26

Code Coverage @yegor256

Codecov.io



21/26

Code Coverage @yegor256

Line Coverage



22/26

Code Coverage @yegor256

Tarpaulin for Rust



23/26

Code Coverage @yegor256

Code Coverage Threshold, JaCoCo Example

1 <project>
2 [...]
3 <build>
4 <plugins>
5 <plugin>
6 <groupId>org.jacoco</groupId>
7 <artifactId>jacoco-maven-plugin</artifactId>
8 <version>0.8.11</version>
9 <executions>
10 <execution>
11 <id>jacoco-initialize</id>
12 <goals>
13 <goal>prepare-agent</goal>
14 </goals>
15 </execution>
16 <execution>
17 <id>jacoco-check</id>
18 <goals>
19 <goal>check</goal>

20 </goals>
21 <configuration>
22 <rules>
23 [...] ← Next slide
24 </rules>
25 </configuration>
26 </execution>
27 <execution>
28 <id>report</id>
29 <goals>
30 <goal>report</goal>
31 </goals>
32 </execution>
33 </executions>
34 </plugin>
35 </plugins>
36 </build>
37 </project>



24/26

Code Coverage @yegor256

Code Coverage Threshold, JaCoCo Rules

1 <rules>
2 <rule>
3 <element>BUNDLE</element>
4 <limits>
5 <limit>
6 <counter>INSTRUCTION</counter>
7 <value>COVEREDRATIO</value>
8 <minimum>0.67</minimum>
9 </limit>
10 <limit>
11 <counter>LINE</counter>
12 <value>COVEREDRATIO</value>
13 <minimum>0.84</minimum>
14 </limit>
15 <limit>
16 <counter>BRANCH</counter>
17 <value>COVEREDRATIO</value>
18 <minimum>0.47</minimum>
19 </limit>

20 <limit>
21 <counter>COMPLEXITY</counter>
22 <value>COVEREDRATIO</value>
23 <minimum>0.57</minimum>
24 </limit>
25 <limit>
26 <counter>METHOD</counter>
27 <value>COVEREDRATIO</value>
28 <minimum>0.76</minimum>
29 </limit>
30 <limit>
31 <counter>CLASS</counter>
32 <value>MISSEDCOUNT</value>
33 <maximum>2</maximum>
34 </limit>
35 </limits>
36 </rule>
37 </rules>

Source: https://github.com/volodya-lombrozo/jtcop

https://github.com/volodya-lombrozo/jtcop


25/26

Code Coverage @yegor256

Code Coverage can be calculated by a few tools:

• JaCoCo for Java

• Istanbul for Javascript

•Gcov for C/C++

• Coverage.py for Python

• Simplecov for Ruby

• Tarpaulin for Rust

https://www.jacoco.org
https://istanbul.js.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://pypi.org/project/coverage/
https://github.com/simplecov-ruby/simplecov
https://github.com/xd009642/tarpaulin


26/26

Code Coverage @yegor256

References
Carlos Arguelles, Marko Ivanković, and Adam Bender.

Code Coverage Best Practices.

https://testing.googleblog.com/2020/08/
code-coverage-best-practices.html, 2020.
[Online; accessed 15-03-2024].

Boris Beizer. Black Box Testing. ACM, 1995.

doi:10.5555/202699.

John B. Bowen. A Survey of Standards and Proposed

Metrics for SoftwareQuality Testing. Computer,
12(8):37–42, 1979. doi:10.1109/mc.1979.1658854.

William Robert Elmendorf. Controlling the

Functional Testing of an Operating System. IEEE
Transactions on Systems Science and Cybernetics,
1969. doi:10.1109/tssc.1969.300221.

Martin Fowler. Continuous Integration. https://
martinfowler.com/bliki/TestCoverage.html,

1997. [Online; accessed 17-03-2024].

D. Gelperin and B. Hetzel. The Growth of Software

Testing. Communications of the ACM, 1988.

doi:10.1145/62959.62965.

Cem Kaner, James Bach, and Bret Pettichord. Lessons
Learned in Software Testing: A Context-Driven
Approach. Wiley, 2002.

Pavneet Singh Kochhar, David Lo, Julia Lawall, and

Nachiappan Nagappan. Code Coverage and

Postrelease Defects: A Large-Scale Study on Open

Source Projects. IEEE Transactions on Reliability,
2017. doi:10.1109/tr.2017.2727062.

Brian Marick. How to Misuse Code Coverage. In

Proceedings of the 16th Interational Conference on
Testing Computer Software, 1997.

Goran Petrović, Marko Ivanković, René Just, and

Gordon Fraser. Code Coverage at Google. In

Proceedings of the 27th Joint Meeting on ESEC/FSE,
2019. doi:10.1145/3338906.3340459.

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://doi.org/10.5555/202699
https://doi.org/10.1109/mc.1979.1658854
https://doi.org/10.1109/tssc.1969.300221
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html
https://doi.org/10.1145/62959.62965
https://doi.org/10.1109/tr.2017.2727062
https://doi.org/10.1145/3338906.3340459

