Code Coverage

YEGOR BUGAYENKO

Lecture #15 out of 24
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=pJrXQ5rptig

2/26

Example, Part |

Live Code: Test Code:
1|int fibonacci(int n) { lassert fibonacci(1l) == 1;
2| if (n <= 0) { »|assert fibonacci(2) == 1;
3 return 0;
o C =17/10 = 0%
5 if (n <= 2) {
6 return 1;
7|}
s| return fibonacci(n-1)
9 + fibonacci(n-2);
10|}

Code Coverage Qyegor256

Code Coverage

Example, Part Il

Live Code:

int fibonacci(int n)
if (n <= 0)
return O;

+
if (n <= 2)
return 1;

¥

return fibonacci(n-

+ fibonacci(n-2);

3/26

Test Code:
{ lassert fibonacci(1l) == 1;
»lassert fibonacci(2) == 1;
3
s|lassert fibonacci(9) == 34;
s|lassert fibonacci(10) == 55;
C = 9/10 = 90%

1)

Qyegor256

4/26

Some Kinds of Code Coverage

o Line Coverage

 Statement Coverage

« Branch Coverage

 Condition Coverage

 Function Coverage

« Linear Code Sequence and Jump (LCSAJ) Coverage
- Modified Condition / Decision Coverage (MC/DC)

Code Coverage Qyegor256

Code Coverage

o] ~ (@) (€)1 BN w N —_

Four Kinds of Coverage

Live Code:
int foo(int x) { |
if (x < 0) { return x; } 2

if (x> 10 || x ==0) A
return 42 / x;
} else {
return 1;
b
+

Test Code:

assert foo(l) == 1;
assert foo(b0) == 42;

Cline = 6/6 = 100%
Cstatenent = 5/6 = 83%
Chrancn = 3/4 = 75%
Ceondition = 3/5 = 60%

5/26

Qyegor256

6/26

“A disciplined test control process is composed of
five steps: 1) establish the intended extent of testing;
2) create a list of functional variations eligible for
testing; 3) rank and subset the eligible variations so
| that test resources can be directed at those with the
% higher payoff; 4) calculate the test coverage of the
test case library; and 5) verify attainment of the
planned test coverage.”

— William Robert Elmendorf. Controlling the Functional Testing of an
WILLIAM ROBERT ELMENDORF Operating System. IEEE Transactions on Systems Science and Cybernetics, 1969.
do0i:10.1109/tssc.1969.300221

Code Coverage Qyegor256

https://doi.org/10.1109/tssc.1969.300221

/26

“However, only half regularly document their test
designs, only half regularly save their tests for reuse
after software changes, and an extremely small five
percent provide regular measurements of code
coverage.”

— D. Gelperin and B. Hetzel. The Growth of Software Testing. Communications
of the ACM, 1988. d0i:10.1145/62959.62965

DAvID GELPERIN

Code Coverage Qyegor256

https://doi.org/10.1145/62959.62965

) % Y%
Test Practice Yes Sometimes
1 Record of defects found during testing 73 16
is maintained ‘
2 Designated person is responsible for 65 13
the test process ‘
3 Test plan describing objectives/ 61 29
approach is required
4 Testing is a systematic and organized 61 30
activity
5 Full-time testers perform system 62 19
testing .
6 Testing is separated from development €0 20
7 Tests are required to be rerun when 51 35
software changes
8 Tests are saved and maintained for 51 28
future use
9 Test specifications and designs are 48 36
documented ;
10 Test procedure is documented in the 45 15
standards manual
11 A log of tests run is maintained 42 35
12 A record of the time spent on testing 40 30
is maintained .
13 Test documents are formally peer- 31 29
reviewed
14 Full-time testers perform integration 24 24
testing
15 The cost of testing is measured and 24 19
tracked .
16 Test training is provided periodically 22 26
17 Test results are formally peer 20 31
reviewed
18 Users are heavily involved in test 8 39
activities)
19 Tests are developed before coding 8 29
20 A measurement of code coverage 5 16

Code Coverage

achieved is required

FIGURE 9. Analysis of Industry Test Practice Usage

8/26

“We note an inconsistency. A high
percentage of the respondents felt
that the testing in their
organization was a systematic and
organized activity (91% answered
either “yes” or “sometimes” to this
practice). However, [...] an
extremely small 5% provide regular
measurements of code coverage.”

— The Growth of Software Testing, David Gelperin and
Bill Hetzel, Communications of the ACM, 31(6), 1988

Qyegor256

9/26

“Junky software takes more tests to achieve
coverage, but it breaks under any systematic test.”

— Boris Beizer. Black Box Testing. ACM, 1995. doi:10.5555/202699

BoRis BEIZER

Code Coverage Qyegor256

https://doi.org/10.5555/202699

10/26

“Coverage numbers (like many numbers) are

dangerous because they’re objective but incomplete.
They too often distort sensible action. Using them in
isolation is as foolish as hiring based only on GPA.”

®M — Brian Marick. How to Misuse Code Coverage. In Proceedings of the 16th
Interational Conference on Testing Computer Software, 1997

BRIAN MARICK

Qyegor256

Code Coverage

11/26

“l would be suspicious of anything like 100% — it
would smell of someone writing tests to make the

coverage numbers happy, but not thinking about
what they are doing.”

— Martin Fowler. Continuous Integration.

| https://martinfowler.com/bliki/TestCoverage.html, 1997. [Online;
| accessed 17-03-2024]

MARTIN FOWLER

Code Coverage Qyegor256

https://martinfowler.com/bliki/TestCoverage.html

12/26

“As you get near 100 percent line coverage, that
doesn’t tell you the product is near release. It just
tells you that the product is no longer obviously far
from release according to this measure.”

— Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software
Testing: A Context-Driven Approach. Wiley, 2002

Cem KANER

Code Coverage Qyegor256

13/26

“Our results show that coverage has an insignificant
correlation with the number of bugs that are found
after the release of the software at the project level,
and no such correlation at the file level.”

— Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability, 2017. doi:10.1109/tr.2017.2727062

PAVNEET SINGH KOCHHAR,
DAvID Lo, JuLIA LAWALL,
NACHIAPPAN NAGAPPAN

Code Coverage Qyegor256

https://doi.org/10.1109/tr.2017.2727062

Code Coverage

“Google does not enforce any code coverage
thresholds across the entire codebase. Projects (or
groups of projects) are free to define their own
thresholds and goals. Many projects opt-into a
centralized voluntary alerting system that defines
five levels of code coverage thresholds.”

— Goran Petrovi¢, Marko Ivankovi¢, René Just, and Gordon Fraser. Code

doi:10.1145/3338906.3340459

GORAN PETROVIC

Coverage at Google. In Proceedings of the 27th Joint Meeting on ESEC/FSE, 20109.

14/26

Qyegor256

https://doi.org/10.1145/3338906.3340459

Code Coverage

Code Coverage Threshold Levels in Google

Table 2: Coverage levels and corresponding thresholds.
Many projects voluntarily set these thresholds as their goal.

LEVEL THRESHOLD

Level 1 Coverage automation disabled

Level 2 Coverage automation enabled

Level 3 Project coverage at least 60%; Changelist coverage at
least 70%

Level 4 Project coverage at least 75%; Changelist coverage at
least 80%

Level 5 Project coverage at least 90%; Changelist coverage at

least 90%

15/26

Qyegor256

16/26

“Code coverage does not guarantee that the covered
lines or branches have been tested correctly, it just
guarantees that they have been executed by a test.
But a low code coverage number does guarantee
that large areas of the product are going completely
untested by automation on every single
deployment.”

— Carlos Arguelles, Marko Ivankovi¢, and Adam Bender. Code Coverage Best
Practices. https://testing.googleblog.com/2020/08/code-coverage-
ADAM BENDER best-practices.html, 2020. [Online; accessed 15-03-2024]

Code Coverage Qyegor256

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html

Code Coverage

Military standards now contain dmlequ tremen f
fwareq alty The metrics and techni
sed to evaluate readiness for acoeptance testi

A Survey of Stondords and Proposed
Metrics for Softwore Quallty Testing

“Many contracts are specifying that a certain
percentage of the statements or instructions must
be successfully executed before the acceptance of
the software by the customer.”

— John B. Bowen. A Survey of Standards and Proposed Metrics for Software
Quality Testing. Computer, 12(8):37-42, 1979. doi:10.1109/mc.1979.1658854

17/26

Qyegor256

https://doi.org/10.1109/mc.1979.1658854

18/26

Industry Standards that Require Code Coverage

« ISO-26262: “Road Vehicles” functional safety (Switzerland)

« IEC 61508: “Functional Safety of Electrical/Electronic/Programmable
Electronic Safety-related Systems” (UK)

« DO-178C: “Software Considerations in Airborne Systems and
Equipment Certification” (USA)

o IEC 62304: “Medical Device Software” (UK)

Code Coverage Qyegor256

[SO-26262:

Methods ASIL
A B ¢ | D |
la Statement coverage “ 4 } +
b Branch coverage + —+ H+ | ++
Ic MC/DC (Modified Condition/Decision Coverage) t t -+
Table 12 (Software Unit Level), ISO 26262-6
Methods ASIL
) A B C D |
la | Function coverage + + 4
Ib | Call coverage + L =+ | &
Table15 (Software Architectural Level), ISO 26262-6
SIL: Safety Integrity Level
Method SiL1 SIL 2 SIL3 SIL4
7a Function Coverage ++ ++ ++ ++
7b Statement Coverage |+ ++ ++ ++
7c Branch Coverage + ++ ++
7d MC/DC 4 ks + ++
W

Table B.2 from DIN EN 61508-3

Code Coverage

DO-178C:

19/26

Level |Impact Coverage Level |% of Systems |% of Software
A Catastrophic MC/DC, C1, CO 20-30% 40%
B Hazardous/Severe |C1, CO 20% 30%
& Major k |co 25% 20%
D Minor - 20% 10%
E No Effect - 10% 5%
Methods ASIL
A B :] D |
la Statement coverage -o 4 }
b Branch coverage o ++)
lc MC/DC (Modified Condition/Decision Coverage) t +
Table 12 (Software Unit Level), ISO 26262-6
Methods ASIL
) A | B D
la | Function coverage + t +
Ib | Call coverage i B i)
Table15 (Software Architectural Level), ISO 26262-6
Qyegor256

Code Coverage

Codecov.io

o000 4P Codecov x +

<«

C m 25 app.codecov.io/gh/yegor256/micromap/tree/master/src

Q Docs Support Blog Feedback

yegor256 [micromap / ¥ master

Coverage Flags Commits Pulls Settings

¥ Branch Context Coverage on branch
master v 68.39%
Source: latest commit 96265d2 212 of 310 lines covered
YAML Configuration

Learn more (7 about PR comment, target and flags

v Hide Chart

3 Months v trend

-26.47%

Jan

100%

80%

60%

40%

ricromap / src [index.rs

20/26

Qyegor256

Code Coverage

Line Coverage

yegor256 [micromap | ¥ master

Coverage Flags Commits Pulls Settings

micromap [src [iterators.rs Uncovered /\ | Partial ! | Covered
110 #[inline]
111 #[must_use]
112 fn into_iter(self) -> Self::IntoIter {
113 IntoIter {
114 pos: 0O,
115 map: ManuallyDrop: :new(self), ThY
116 3}
117 }
118 }
119
120 impl<K: PartialEq, V, const N: usize> Drop for IntoIter<K, V, N> {
121 fn drop(&mut self) {
122 for i in self.pos..self.map.len {
123 self.map.item_drop(i);
124 3
125 }
126 |}
127
128 dimpl<'a, K, V> DoubleEndedIterator for Iter<'a, K, V> {
129 fn next_back(&mut self) -> Option<Self::Item> { A
130 self.iter.next_back().map(|p| { A
131 let p = unsafe { p.assume_init_ref() }; A
132 (&p.0, &p.1) ThY
133 1)
134 }
135 }

21/26

Qyegor256

22/26

Tarpaulin for Rust

Blame 23 lines (23 loc) - 551 Bytes Raw 0 & 2 ~ [

1 —

2 name: tarpaulin

3 on:

&4 push:

5 branches:

6 - master

7 jobs:

8 tarpaulin:

9 runs-on: ubuntu-22.04
1e steps:
11 - uses: actions/checkout@v4
12 - uses: actions-rs/toolchain@vl
13 with:

14 toolchain: stable

15 override: true

16 - uses: actions-rs/tarpaulin@ve.1
17 with:

18 version: '0.22.0'

19 args: '—-all-features ——exclude-files src/lib.rs -- --test-threads 1'
20 - uses: codecov/codecov-action@v3
21 with:

22 token: ${{ secrets.CODECOV_TOKEN }}
23 fail_ci_if_error: true

Code Coverage Qyegor256

Code Coverage

0 NN O Ul A WN =

Code Coverage Threshold, JaCoCo Example

<project>
[...]
<build>
<plugins>
<plugin>
<groupld>org.jacoco</groupld>
<artifactId>jacoco-maven-plugin</artifactId>
<version>0.8.11</version>
<executions>
<execution>
<id>jacoco-initialize</id>
<goals>
<goal>prepare-agent</goal>
</goals>
</execution>
<execution>
<id>jacoco-check</id>
<goals>
<goal>check</goal>

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

</goals>
<configuration>
<rules>
[...] <« Next slide
</rules>
</configuration>
</execution>
<execution>
<id>report</id>
<goals>
<goal>report</goal>
</goals>
</execution>
</executions>
</plugin>
</plugins>
</build>
</project>

23/26

Qyegor256

Code Coverage

0 NN O Ul A WN =

Code Coverage Threshold, JaCoCo Rules

<rules>
<rule>
<element>BUNDLE</element>
<limits>
<limit>
<counter>INSTRUCTION</counter>
<value>COVEREDRATIO</value>
<minimum>0.67</minimum>
</1limit>
<limit>
<counter>LINE</counter>
<value>COVEREDRATIO</value>
<minimum>0.84</minimum>
</limit>
<limit>
<counter>BRANCH</counter>
<value>COVEREDRATIO</value>
<minimum>0.47</minimum>
</limit>

Source: https://github. com/volodya-lombrozo/jtcop

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

<limit>
<counter>COMPLEXITY</counter>
<value>COVEREDRATIO</value>
<minimum>0.57</minimum>

</limit>

<limit>
<counter>METHOD</counter>
<value>COVEREDRATIO</value>
<minimum>0.76</minimum>

</limit>

<limit>
<counter>CLASS</counter>
<value>MISSEDCOUNT</value>
<maximum>2</maximum>

</limit>

</limits>

</rule>
</rules>

24/26

Qyegor256

https://github.com/volodya-lombrozo/jtcop

25/26

Code Coverage can be calculated by a few tools:

« JaCoCo for Java

e Istanbul for Javascript

e« Geov for C/C++

 Coverage.py for Python

 Simplecov for Ruby

e Tarpaulin for Rust

Code Coverage Qyegor256

https://www.jacoco.org
https://istanbul.js.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://pypi.org/project/coverage/
https://github.com/simplecov-ruby/simplecov
https://github.com/xd009642/tarpaulin

Code Coverage

References

Carlos Arguelles, Marko Ivankovi¢, and Adam Bender.

Code Coverage Best Practices.
https://testing.googleblog.com/2020/08/
code-coverage-best-practices.html, 2020.
[Online; accessed 15-03-2024].

Boris Beizer. Black Box Testing. ACM, 1995.
d0i:10.5555/202699.

John B. Bowen. A Survey of Standards and Proposed
Metrics for Software Quality Testing. Computer,
12(8):37-42, 1979. d0i:10.1109/mc.1979.1658854.

William Robert ElImendorf. Controlling the
Functional Testing of an Operating System. IEEE
Transactions on Systems Science and Cybernetics,
1969. do0i:10.1109/tssc.1969.300221.

Martin Fowler. Continuous Integration. https://
martinfowler.com/bliki/TestCoverage.html,

1997. [Online; accessed 17-03-2024].

D. Gelperin and B. Hetzel. The Growth of Software
Testing. Communications of the ACM, 1988.
d0i:10.1145/62959.62965.

Cem Kaner, James Bach, and Bret Pettichord. Lessons
Learned in Software Testing: A Context-Driven
Approach. Wiley, 2002.

Pavneet Singh Kochhar, David Lo, Julia Lawall, and
Nachiappan Nagappan. Code Coverage and
Postrelease Defects: A Large-Scale Study on Open
Source Projects. IEEE Transactions on Reliability,
2017. doi:10.1109/tr.2017.2727062.

Brian Marick. How to Misuse Code Coverage. In
Proceedings of the 16th Interational Conference on
Testing Computer Software, 1997.

Goran Petrovi¢, Marko Ivankovi¢, René Just, and
Gordon Fraser. Code Coverage at Google. In
Proceedings of the 27th Joint Meeting on ESEC/FSE,
2019. doi:10.1145/3338906.3340459.

26/26

Qyegor256

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://doi.org/10.5555/202699
https://doi.org/10.1109/mc.1979.1658854
https://doi.org/10.1109/tssc.1969.300221
https://martinfowler.com/bliki/TestCoverage.html
https://martinfowler.com/bliki/TestCoverage.html
https://doi.org/10.1145/62959.62965
https://doi.org/10.1109/tr.2017.2727062
https://doi.org/10.1145/3338906.3340459

