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Example, Part I

Live Code:

1 int fibonacci(int n) {
2 if (n <= 0) {
3 return 0;
4 }
5 if (n <= 2) {
6 return 1;
7 }
8 return fibonacci(n-1)
9 + fibonacci(n-2);
10 }

Test Code:

1 assert fibonacci(1) == 1;
2 assert fibonacci(2) == 1;

C = 7/10 = 70%
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Example, Part II

Live Code:

1 int fibonacci(int n) {
2 if (n <= 0) {
3 return 0;
4 }
5 if (n <= 2) {
6 return 1;
7 }
8 return fibonacci(n-1)
9 + fibonacci(n-2);
10 }

Test Code:

1 assert fibonacci(1) == 1;
2 assert fibonacci(2) == 1;
3

4 assert fibonacci(9) == 34;
5 assert fibonacci(10) == 55;

C = 9/10 = 90%
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Some Kinds of Code Coverage

• Line Coverage
• Statement Coverage

• Branch Coverage

• Condition Coverage

• Function Coverage

• Linear Code Sequence and Jump (LCSAJ) Coverage

•Modified Condition / Decision Coverage (MC/DC)
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Four Kinds of Coverage

Live Code:

1 int foo(int x) {
2 if (x < 0) { return x; }
3 if (x > 10 || x == 0) {
4 return 42 / x;
5 } else {
6 return 1;
7 }
8 }

Test Code:

1 assert foo(1) == 1;
2 assert foo(50) == 42;

Cline = 6/6 = 100%

Cstatement = 5/6 = 83%

Cbranch = 3/4 = 75%

Ccondition = 3/5 = 60%
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William Robert Elmendorf

“A disciplined test control process is composed of

five steps: 1) establish the intended extent of testing;

2) create a list of functional variations eligible for

testing; 3) rank and subset the eligible variations so

that test resources can be directed at those with the

higher payoff; 4) calculate the test coverage of the

test case library; and 5) verify attainment of the

planned test coverage.”

— William Robert Elmendorf. Controlling the Functional Testing of an
Operating System. IEEE Transactions on Systems Science and Cybernetics, 1969.
doi:10.1109/tssc.1969.300221

https://doi.org/10.1109/tssc.1969.300221
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David Gelperin

“However, only half regularly document their test

designs, only half regularly save their tests for reuse

after software changes, and an extremely small five

percent provide regular measurements of code

coverage.”

— D. Gelperin and B. Hetzel. The Growth of Software Testing. Communications
of the ACM, 1988. doi:10.1145/62959.62965

https://doi.org/10.1145/62959.62965
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“We note an inconsistency. A high

percentage of the respondents felt

that the testing in their

organization was a systematic and

organized activity (91% answered

either “yes” or “sometimes” to this

practice). However, [...] an

extremely small 5% provide regular

measurements of code coverage.”

— The Growth of Software Testing, David Gelperin and

Bill Hetzel, Communications of the ACM, 31(6), 1988
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Boris Beizer

“Junky software takes more tests to achieve

coverage, but it breaks under any systematic test.”

— Boris Beizer. Black Box Testing. ACM, 1995. doi:10.5555/202699

https://doi.org/10.5555/202699
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Brian Marick

“Coverage numbers (like many numbers) are

dangerous because they’re objective but incomplete.

They too often distort sensible action. Using them in

isolation is as foolish as hiring based only on GPA.”

— Brian Marick. How to Misuse Code Coverage. In Proceedings of the 16th
Interational Conference on Testing Computer Software, 1997
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Martin Fowler

“I would be suspicious of anything like 100% — it

would smell of someone writing tests to make the

coverage numbers happy, but not thinking about

what they are doing.”

— Martin Fowler. Continuous Integration.
https://martinfowler.com/bliki/TestCoverage.html, 1997. [Online;
accessed 17-03-2024]

https://martinfowler.com/bliki/TestCoverage.html


12/26

Code Coverage @yegor256

Cem Kaner

“As you get near 100 percent line coverage, that

doesn’t tell you the product is near release. It just

tells you that the product is no longer obviously far

from release according to this measure.”

— Cem Kaner, James Bach, and Bret Pettichord. Lessons Learned in Software
Testing: A Context-Driven Approach. Wiley, 2002
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Pavneet Singh Kochhar,

David Lo, Julia Lawall,

Nachiappan Nagappan

“Our results show that coverage has an insignificant

correlation with the number of bugs that are found

after the release of the software at the project level,

and no such correlation at the file level.”

— Pavneet Singh Kochhar, David Lo, Julia Lawall, and Nachiappan Nagappan.
Code Coverage and Postrelease Defects: A Large-Scale Study on Open Source
Projects. IEEE Transactions on Reliability, 2017. doi:10.1109/tr.2017.2727062

https://doi.org/10.1109/tr.2017.2727062
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Goran Petrović

“Google does not enforce any code coverage

thresholds across the entire codebase. Projects (or

groups of projects) are free to define their own

thresholds and goals. Many projects opt-into a

centralized voluntary alerting system that defines

five levels of code coverage thresholds.”

— Goran Petrović, Marko Ivanković, René Just, and Gordon Fraser. Code
Coverage at Google. In Proceedings of the 27th Joint Meeting on ESEC/FSE, 2019.
doi:10.1145/3338906.3340459

https://doi.org/10.1145/3338906.3340459
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Code Coverage Threshold Levels in Google



16/26

Code Coverage @yegor256

Adam Bender

“Code coverage does not guarantee that the covered

lines or branches have been tested correctly, it just

guarantees that they have been executed by a test.

But a low code coverage number does guarantee

that large areas of the product are going completely

untested by automation on every single

deployment.”

— Carlos Arguelles, Marko Ivanković, and Adam Bender. Code Coverage Best
Practices. https://testing.googleblog.com/2020/08/code-coverage-
best-practices.html, 2020. [Online; accessed 15-03-2024]

https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
https://testing.googleblog.com/2020/08/code-coverage-best-practices.html
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“Many contracts are specifying that a certain

percentage of the statements or instructions must

be successfully executed before the acceptance of

the software by the customer.”

— John B. Bowen. A Survey of Standards and Proposed Metrics for Software
Quality Testing. Computer, 12(8):37–42, 1979. doi:10.1109/mc.1979.1658854

https://doi.org/10.1109/mc.1979.1658854
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Industry Standards that Require Code Coverage

• ISO-26262: “Road Vehicles” functional safety (Switzerland)

• IEC 61508: “Functional Safety of Electrical/Electronic/Programmable

Electronic Safety-related Systems” (UK)

•DO-178C: “Software Considerations in Airborne Systems and

Equipment Certification” (USA)

• IEC 62304: “Medical Device Software” (UK)
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ISO-26262:

IEC 61508:

DO-178C:

IEC 62304:
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Codecov.io
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Line Coverage
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Tarpaulin for Rust
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Code Coverage Threshold, JaCoCo Example

1 <project>
2 [...]
3 <build>
4 <plugins>
5 <plugin>
6 <groupId>org.jacoco</groupId>
7 <artifactId>jacoco-maven-plugin</artifactId>
8 <version>0.8.11</version>
9 <executions>
10 <execution>
11 <id>jacoco-initialize</id>
12 <goals>
13 <goal>prepare-agent</goal>
14 </goals>
15 </execution>
16 <execution>
17 <id>jacoco-check</id>
18 <goals>
19 <goal>check</goal>

20 </goals>
21 <configuration>
22 <rules>
23 [...] ← Next slide
24 </rules>
25 </configuration>
26 </execution>
27 <execution>
28 <id>report</id>
29 <goals>
30 <goal>report</goal>
31 </goals>
32 </execution>
33 </executions>
34 </plugin>
35 </plugins>
36 </build>
37 </project>
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Code Coverage Threshold, JaCoCo Rules

1 <rules>
2 <rule>
3 <element>BUNDLE</element>
4 <limits>
5 <limit>
6 <counter>INSTRUCTION</counter>
7 <value>COVEREDRATIO</value>
8 <minimum>0.67</minimum>
9 </limit>
10 <limit>
11 <counter>LINE</counter>
12 <value>COVEREDRATIO</value>
13 <minimum>0.84</minimum>
14 </limit>
15 <limit>
16 <counter>BRANCH</counter>
17 <value>COVEREDRATIO</value>
18 <minimum>0.47</minimum>
19 </limit>

20 <limit>
21 <counter>COMPLEXITY</counter>
22 <value>COVEREDRATIO</value>
23 <minimum>0.57</minimum>
24 </limit>
25 <limit>
26 <counter>METHOD</counter>
27 <value>COVEREDRATIO</value>
28 <minimum>0.76</minimum>
29 </limit>
30 <limit>
31 <counter>CLASS</counter>
32 <value>MISSEDCOUNT</value>
33 <maximum>2</maximum>
34 </limit>
35 </limits>
36 </rule>
37 </rules>

Source: https://github.com/volodya-lombrozo/jtcop

https://github.com/volodya-lombrozo/jtcop
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Code Coverage can be calculated by a few tools:

• JaCoCo for Java

• Istanbul for Javascript

•Gcov for C/C++

• Coverage.py for Python

• Simplecov for Ruby

• Tarpaulin for Rust

https://www.jacoco.org
https://istanbul.js.org/
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://pypi.org/project/coverage/
https://github.com/simplecov-ruby/simplecov
https://github.com/xd009642/tarpaulin
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