
Dead Code

Yegor Bugayenko

Lecture #12 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=zN0gX9m6a2k


2/23

Dead Code @yegor256

Motivating Example

Before (wrong):

1 class Book
2 private int id;
3 public Book(int it)
4 this.id = i;
5 public int getId()
6 return this.id;
7

8 private int setId(int i)
9 this.id = i;

After (better):

1 class Book
2 private final int id;
3 public Book(int it)
4 this.id = i;
5 public int getId()
6 return this.id;



3/23

Dead Code @yegor256

Dead Code Elimination (Compiler Optimization)

Dead code is here:

1 void main(int x) {
2 int a = 42;
3 if (x > 0) {
4 a = 256;
5 }
6 a = 7;
7 print(a);
8 }

“Dead code refers to computations

whose results are never used. Code

that is dead can be eliminated

without affecting the behavior of

the program.”

Source: Compiler Techniques for Code Compaction,
Saumya K. Debray, William Evans, Robert Muth,

Bjorn De Sutter, ACM Transactions on Programming

languages and Systems (TOPLAS), 22(2), 2000



4/23

Dead Code @yegor256

Mika Mäntylä

“Dead code is code that has been used in the past,

but is currently never executed. Dead code hinders

code comprehension and makes the current

program structure less obvious.”

— M. Mantyla, J. Vanhanen, and C. Lassenius. A Taxonomy and an Initial
Empirical Study of Bad Smells in Code. In Proceedings of the International
Conference on Software Maintenance, 2003. doi:10.1109/icsm.2003.1235447

https://doi.org/10.1109/icsm.2003.1235447


5/23

Dead Code @yegor256

Sebastian Eder

“We conducted the study on the level of methods in

the sense of object oriented programming. The

systems contains 25,390 methods. We found that

25% of all methods were never used during the

complete period.”

— Sebastian Eder, Maximilian Junker, Elmar Jurgens, Benedikt Hauptmann,
Rudolf Vaas, and Karl-Heinz Prommer. How Much Does Unused Code Matter
for Maintenance? In Proceedings of the 34th International Conference on Software
Engineering (ICSE), 2012. doi:10.1109/icse.2012.6227109

https://doi.org/10.1109/icse.2012.6227109


6/23

Dead Code @yegor256

Unreachable/Dead Methods in Java

Source: Simone Romano, Giuseppe Scanniello, Carlo Sartiani, and Michele Risi. A graph-based approach to

detect unreachable methods in Java software. In Proceedings of the 31st Annual Symposium on Applied
Computing, pages 1538–1541, 2016. doi:10.1145/2851613.2851968

https://doi.org/10.1145/2851613.2851968


7/23

Dead Code @yegor256

Simone Romano

“Although there is some consensus on the fact that

dead code is a common phenomenon, it could be

harmful, and it seems to matter to software

professionals; surprisingly, dead code has received

very little empirical attention from the software

engineering research community.”

— Simone Romano, Christopher Vendome, Giuseppe Scanniello, and Denys
Poshyvanyk. A Multi-Study Investigation into Dead Code. IEEE Transactions on
Software Engineering, 2018. doi:10.1109/tse.2018.2842781

https://doi.org/10.1109/tse.2018.2842781


8/23

Dead Code @yegor256

“i) ...; ii) dead methods generally

survive for a long time, in terms of

commits, before being buried or

revived; iii) dead methods are rarely

revived; and iv) most dead methods

are dead since the creation of the

corresponding methods.”

Source: Danilo Caivano, Pietro Cassieri, Simone

Romano, and Giuseppe Scanniello. An Exploratory

Study on Dead Methods in Open-source Java

Desktop Applications. In Proceedings of the 15th
International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–11,
2021. doi:10.1145/3475716.3475773

https://doi.org/10.1145/3475716.3475773


9/23

Dead Code @yegor256

Pietro Cassieri

“The results indicate that, after removing dead

methods, the internal structure of the source code

significantly improves, while the space to store

executable code significantly decreases along with

the time to compile source code.”

— Simone Romano, Giovanni Toriello, Pietro Cassieri, Rita Francese, and
Giuseppe Scanniello. A Folklore Confirmation on the Removal of Dead Code.
In Proceedings of the 28th International Conference on Evaluation and Assessment
in Software Engineering, pages 333–338, 2024. doi:10.1145/3661167.3661188

https://doi.org/10.1145/3661167.3661188


10/23

Dead Code @yegor256

“The elimination of JavaScript dead

code leads to noticeable (and

statistically significant) differences

in terms of the number of

performed HTTP requests only for

in-the-lab subjects.”

Source: Ivano Malavolta, Kishan Nirghin, Gian Luca

Scoccia, Simone Romano, Salvatore Lombardi,

Giuseppe Scanniello, and Patricia Lago. JavaScript

Dead Code Identification, Elimination, and Empirical

Assessment. IEEE Transactions on Software
Engineering, 49(7):3692–3714, 2023.
doi:10.1109/TSE.2023.3267848

https://doi.org/10.1109/TSE.2023.3267848


11/23

Dead Code @yegor256

Katriel Cohn-Gordon

“At Meta, in the last year alone, we removed

petabytes of data across 12.8 million distinct assets,

and deleted over 104 million lines of code.”

— Will Shackleton, Katriel Cohn-Gordon, Peter C Rigby, Rui Abreu, James Gill,
Nachiappan Nagappan, Karim Nakad, Ioannis Papagiannis, Luke Petre, Giorgi
Megreli, et al. Dead Code Removal at Meta: Automatically Deleting Millions of
Lines of Code and Petabytes of Deprecated Data. In Proceedings of the 31st Joint
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering, pages 1705–1715, 2023. doi:10.1145/3611643.3613871

https://doi.org/10.1145/3611643.3613871


12/23

Dead Code @yegor256

Volatility Metric

µ

“The variance Var(g) is the
Volatility of the source code. The

smaller the Volatility the more

cohesive is the repository and the

smaller the amount of the

abandoned code inside it.”

Source: Yegor Bugayenko. Volatility Metric to Detect

Anomalies in Source Code Repositories. In

Proceedings of the 1st ACM SIGPLAN International
Workshop on Beyond Code: No Code, pages 1–4, 2021.
doi:10.1145/3486949.3486961

https://doi.org/10.1145/3486949.3486961


13/23

Dead Code @yegor256

Volatility vs. Number of Files in a Repo

Source: Yegor Bugayenko. Volatility Metric to Detect Anomalies in Source Code Repositories. In Proceedings of
the 1st ACM SIGPLAN International Workshop on Beyond Code: No Code, pages 1–4, 2021.
doi:10.1145/3486949.3486961

https://doi.org/10.1145/3486949.3486961


14/23

Dead Code @yegor256

Ciera Jaspan

“Our survey results show that engineers at Google

strongly prefer our monolithic repo, and that

visibility of the codebase and simple dependency

management were the primary factors for this

preference.”

— Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K
Smith, Collin Winter, and Emerson Murphy-Hill. Advantages and
Disadvantages of a Monolithic Repository: A Case Study at Google. In
Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, pages 225–234, 2018.
doi:10.1145/3183519.3183550

https://doi.org/10.1145/3183519.3183550


15/23

Dead Code @yegor256

Monolithic Repositories

Centralization The codebase is contained in a single repo encompassing multiple projects.

Visibility Code is viewable and searchable by all engineers in the organization.

Synchronization: The development process is trunk-based; engineers commit to the head of the repo.

Completeness Any project in the repo can be built only from dependencies also checked into the repo.

Dependencies are unversioned; projects must use whatever version of their dependency is at the repo head.

Standardization A shared set of tooling governs how engineers interact with the code, including

building, testing, browsing, and reviewing code.

Source: Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin Sadowski, Edward K Smith, Collin Winter, and

Emerson Murphy-Hill. Advantages and Disadvantages of a Monolithic Repository: A Case Study at Google. In

Proceedings of the 40th International Conference on Software Engineering: Software Engineering in Practice, pages
225–234, 2018. doi:10.1145/3183519.3183550

https://doi.org/10.1145/3183519.3183550


16/23

Dead Code @yegor256

Rachel Potvin

“The Google codebase includes approximately one

billion files and has a history of approximately 35

million commits spanning Google’s entire 18-year

existence. The repository contains 86TBa of data,

including approximately two billion lines of code in

nine million unique source files.”

— Rachel Potvin and Josh Levenberg. Why Google Stores Billions of Lines of
Code in a Single Repository. Communications of the ACM, 2016.
doi:10.1145/2854146

https://doi.org/10.1145/2854146


17/23

Dead Code @yegor256

Durham Goode

“Facebook’s main source repository is

enormous—many times larger than even the Linux

kernel, which checked in at 17 million lines of code

and 44,000 files in 2013.”

— Rain Durham Goode. Scaling Mercurial at Facebook.
https://engineering.fb.com/2014/01/07/core-infra/scaling-
mercurial-at-facebook/, 2014. [Online; accessed 15-03-2024]

https://engineering.fb.com/2014/01/07/core-infra/scaling-mercurial-at-facebook/
https://engineering.fb.com/2014/01/07/core-infra/scaling-mercurial-at-facebook/


18/23

Dead Code @yegor256

Tomas Votruba

“Before monorepo, I had to upgrade every package

manually, which resulted in dissonance: one

package used Symfony\Console 3.2, but other only

2.8 and it got messy for no reason.”

— Tomas Votruba. How Monolithic Repository in Open Source Saved My
Laziness. https://tomasvotruba.com/blog/2017/01/31/how-monolithic-
repository-in-open-source-saved-my-laziness, 2017. [Online; accessed
15-03-2024]

https://tomasvotruba.com/blog/2017/01/31/how-monolithic-repository-in-open-source-saved-my-laziness
https://tomasvotruba.com/blog/2017/01/31/how-monolithic-repository-in-open-source-saved-my-laziness


19/23

Dead Code @yegor256

What About Yandex?

Source: Alexey Kruglov. Continuous Integration in Yandex.

https://habr.com/ru/companies/yandex/articles/428972/, nov 2018. [Online; accessed 15-12-2024]

https://habr.com/ru/companies/yandex/articles/428972/


20/23

Dead Code @yegor256

Benefits of “Manyrepo” Approach

Encapsulation Each repo encapsulates and hides its details from everybody else.

Fast BuildsWhen a repo is small, the time its automated build takes is small.

Accurate Metrics Calculating LoC for a large repository doesn’t make any sense.

Homogeneous Tasks It’s easier to make tasks similar in size and complexity.

Single Coding Standard Smaller repositories look more beautiful.

Short Names Smaller namespaces mean better maintainability.

Simple TestsMore dependencies are difficult to mock and test.

Source: Yegor Bugayenko. Monolithic Repos Are Evil. https://www.yegor256.com/180905.html, sep 2018.

[Online; accessed 15-12-2024]

https://www.yegor256.com/180905.html


21/23

Dead Code @yegor256

References
Yegor Bugayenko. Monolithic Repos Are Evil.

https://www.yegor256.com/180905.html, sep
2018. [Online; accessed 15-12-2024].

Yegor Bugayenko. Volatility Metric to Detect

Anomalies in Source Code Repositories. In

Proceedings of the 1st ACM SIGPLAN International
Workshop on Beyond Code: No Code, pages 1–4,
2021. doi:10.1145/3486949.3486961.

Danilo Caivano, Pietro Cassieri, Simone Romano, and

Giuseppe Scanniello. An Exploratory Study on

Dead Methods in Open-source Java Desktop

Applications. In Proceedings of the 15th
International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 1–11,
2021. doi:10.1145/3475716.3475773.

Rain Durham Goode. Scaling Mercurial at Facebook.

https:
//engineering.fb.com/2014/01/07/core-
infra/scaling-mercurial-at-facebook/,

2014. [Online; accessed 15-03-2024].

Sebastian Eder, Maximilian Junker, Elmar Jurgens,

Benedikt Hauptmann, Rudolf Vaas, and

Karl-Heinz Prommer. How Much Does Unused

Code Matter for Maintenance? In Proceedings of
the 34th International Conference on Software
Engineering (ICSE), 2012.
doi:10.1109/icse.2012.6227109.

Ciera Jaspan, Matthew Jorde, Andrea Knight, Caitlin

Sadowski, Edward K Smith, Collin Winter, and

Emerson Murphy-Hill. Advantages and

Disadvantages of a Monolithic Repository: A

Case Study at Google. In Proceedings of the 40th
International Conference on Software Engineering:
Software Engineering in Practice, pages 225–234,
2018. doi:10.1145/3183519.3183550.

Alexey Kruglov. Continuous Integration in Yandex.

https://habr.com/ru/companies/yandex/
articles/428972/, nov 2018. [Online; accessed
15-12-2024].

Ivano Malavolta, Kishan Nirghin, Gian Luca Scoccia,

https://www.yegor256.com/180905.html
https://doi.org/10.1145/3486949.3486961
https://doi.org/10.1145/3475716.3475773
https://engineering.fb.com/2014/01/07/core-infra/scaling-mercurial-at-facebook/
https://engineering.fb.com/2014/01/07/core-infra/scaling-mercurial-at-facebook/
https://engineering.fb.com/2014/01/07/core-infra/scaling-mercurial-at-facebook/
https://doi.org/10.1109/icse.2012.6227109
https://doi.org/10.1145/3183519.3183550
https://habr.com/ru/companies/yandex/articles/428972/
https://habr.com/ru/companies/yandex/articles/428972/


22/23

Dead Code @yegor256

Simone Romano, Salvatore Lombardi, Giuseppe

Scanniello, and Patricia Lago. JavaScript Dead

Code Identification, Elimination, and Empirical

Assessment. IEEE Transactions on Software
Engineering, 49(7):3692–3714, 2023.
doi:10.1109/TSE.2023.3267848.

M. Mantyla, J. Vanhanen, and C. Lassenius. A

Taxonomy and an Initial Empirical Study of Bad

Smells in Code. In Proceedings of the International
Conference on Software Maintenance, 2003.
doi:10.1109/icsm.2003.1235447.

Rachel Potvin and Josh Levenberg. Why Google

Stores Billions of Lines of Code in a Single

Repository. Communications of the ACM, 2016.

doi:10.1145/2854146.

Simone Romano, Giuseppe Scanniello, Carlo Sartiani,

and Michele Risi. A graph-based approach to

detect unreachable methods in Java software. In

Proceedings of the 31st Annual Symposium on
Applied Computing, pages 1538–1541, 2016.
doi:10.1145/2851613.2851968.

Simone Romano, Christopher Vendome, Giuseppe

Scanniello, and Denys Poshyvanyk. A

Multi-Study Investigation into Dead Code. IEEE
Transactions on Software Engineering, 2018.
doi:10.1109/tse.2018.2842781.

Simone Romano, Giovanni Toriello, Pietro Cassieri,

Rita Francese, and Giuseppe Scanniello. A

Folklore Confirmation on the Removal of Dead

Code. In Proceedings of the 28th International
Conference on Evaluation and Assessment in
Software Engineering, pages 333–338, 2024.
doi:10.1145/3661167.3661188.

Will Shackleton, Katriel Cohn-Gordon, Peter C Rigby,

Rui Abreu, James Gill, Nachiappan Nagappan,

Karim Nakad, Ioannis Papagiannis, Luke Petre,

Giorgi Megreli, et al. Dead Code Removal at

Meta: Automatically Deleting Millions of Lines of

Code and Petabytes of Deprecated Data. In

Proceedings of the 31st Joint European Software
Engineering Conference and Symposium on the
Foundations of Software Engineering, pages
1705–1715, 2023. doi:10.1145/3611643.3613871.

Tomas Votruba. How Monolithic Repository in Open

https://doi.org/10.1109/TSE.2023.3267848
https://doi.org/10.1109/icsm.2003.1235447
https://doi.org/10.1145/2854146
https://doi.org/10.1145/2851613.2851968
https://doi.org/10.1109/tse.2018.2842781
https://doi.org/10.1145/3661167.3661188
https://doi.org/10.1145/3611643.3613871


23/23

Dead Code @yegor256

Source Saved My Laziness.

https://tomasvotruba.com/blog/2017/01/
31/how-monolithic-repository-in-open-

source-saved-my-laziness, 2017. [Online;
accessed 15-03-2024].

https://tomasvotruba.com/blog/2017/01/31/how-monolithic-repository-in-open-source-saved-my-laziness
https://tomasvotruba.com/blog/2017/01/31/how-monolithic-repository-in-open-source-saved-my-laziness
https://tomasvotruba.com/blog/2017/01/31/how-monolithic-repository-in-open-source-saved-my-laziness

