
Clone Coverage

Yegor Bugayenko

Lecture #11 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=ynPTEzDTutc


2/27

Clone Coverage @yegor256

Edward Yourdon

“Whenever possible, we wish to maximize fan-in

during the design process. Fan-in is the raison d’être
of modularity: Each instance of multiple fan-in

means that some duplicate code has been avoided.”

— Edward Yourdon and Larry Constantine. Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design. Prentice Hall, 1979.
doi:10.5555/578522

https://doi.org/10.5555/578522


3/27

Clone Coverage @yegor256

Bertrand Meyer

“The challenge of reusability is to avoid unneeded

duplication of software by taking advantage of the

commonality between variants. If identical or

near-identical fragments appear in different

modules, it will be difficult to guarantee their

integrity and to ensure that changes or corrections

get propagated to all the needed places.”

— Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
doi:10.5555/534929

https://doi.org/10.5555/534929


4/27

Clone Coverage @yegor256

Kent Beck

“You must find a way to eliminate all the duplicated

logic in the system. This is the hardest part of

design for me, because you first have to find the

duplication, and then you have to find a way to

eliminate it. Eliminating duplication naturally leads

you to create lots of little objects and lots of little

methods, because otherwise there will inevitably be

duplication.”

— Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000. doi:10.5555/318762

https://doi.org/10.5555/318762


5/27

Clone Coverage @yegor256

“With code in one place, you save the space that

would have been used by duplicated code.

Modifications will be easier because you’ll need to

modify the code in only one location. The code will

be more reliable because you’ll have to check only

one place to ensure that the code is right.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143


6/27

Clone Coverage @yegor256

Robert C. Martin

“Duplication is the primary enemy of a

well-designed system.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398


7/27

Clone Coverage @yegor256

Rainer Koschke

“The problem with code cloning is that errors in the

original must be fixed in every copy. Other kinds of

maintenance changes, for instance, extensions or

adaptations, must be applied multiple times, too.

Yet, it is usually not documented where code was

copied.”

— Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions
on Software Engineering, 2007. doi:10.1109/tse.2007.70725

https://doi.org/10.1109/tse.2007.70725


8/27

Clone Coverage @yegor256

Motivating Example (part I)

Before (wrong):

1 printf("Hi, %s!", getName(42));
2 printf("Hi, %s!", getName(7));
3 printf("Hi, %s!", getName(55));

After (better):

1 sayHello(42);
2 sayHello(7);
3 sayHello(55);
4

5 void sayHello(int id) {
6 var n = getName(id);
7 printf("Hi, %s!", n);
8 }



9/27

Clone Coverage @yegor256

Motivating Example (part II)

Before (still not ideal):

1 sayHello(42);
2 sayHello(7);
3 sayHello(55);
4

5 void sayHello(int id) {
6 var n = getName(id);
7 printf("Hi, %s!", n);
8 }

After (perfect):

1 var users = [42, 7, 55];
2 for (id : users) {
3 sayHello(id);
4 }
5

6 void sayHello(int id) {
7 var n = getName(id);
8 printf("Hi, %s!", n);
9 }



10/27

Clone Coverage @yegor256

Brenda S. Baker

“Two lines of code are considered to be identical if

they contain the same sequence of characters after

removing comments and white space; the semantics

of the program statements are not analyzed.”

— Brenda S. Baker. A Program for Identifying Duplicated Code. In Proceedings
of the 24th Symposium on the Interface, pages 1–9, 1993



11/27

Clone Coverage @yegor256

Up to 38% of lines are involved in duplicates

“The plots are dense near the main

diagonal, implying that most

copies tend to occur fairly locally,

e.g. within the same file or module.

However, certain line segments

occur away from the main

diagonal; it would be interesting to

investigate why the corresponding

sections of code are duplicated.”

Source: Brenda S. Baker. A Program for Identifying

Duplicated Code. In Proceedings of the 24th
Symposium on the Interface, pages 1–9, 1993



12/27

Clone Coverage @yegor256

Andy Hunt

“Don’t Repeat Yourself (DRY): Every piece of

knowledge must have a single, unambiguous,

authoritative representation within a system.”

— Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From
Journeyman to Master. Pearson Education, 1999. doi:10.5555/320326

https://doi.org/10.5555/320326


13/27

Clone Coverage @yegor256

Kent Beck

“The Rule of Three: The first time you do

something, you just do it. The second time you do

something similar, you wince at the duplication, but

you do the duplicate thing anyway. The third time

you do something similar, you refactor.”

— Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999. doi:10.5555/311424

https://doi.org/10.5555/311424


14/27

Clone Coverage @yegor256

Yoshiki Higo

“Code-clone analysis is a good vehicle to

quantitatively understand the differences and

improvements between two versions of the same

software system”

— Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue.
Analysis of the Linux Kernel Evolution Using Code Clone Coverage. In
Proceedings of the 4th International Workshop on Mining Software Repositories,
2007. doi:10.1109/msr.2007.1

https://doi.org/10.1109/msr.2007.1


15/27

Clone Coverage @yegor256

Wasi Haider Butt

“We identified and analyzed 26 Code Clone

Detection (CCD) tools, i.e., 13 existing and 13

proposed/developed. Moreover, 62 open-source

subject systems whose source code is utilized for the

CCD are presented.”

— Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque
Azam, and Bilal Maqbool. A Systematic Review on Code Clone Detection. IEEE
Access, 2019. doi:10.1109/access.2019.2918202

https://doi.org/10.1109/access.2019.2918202


16/27

Clone Coverage @yegor256

Type-1: Exact Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 // Here we print a message
2 // to the console for a user
3 printf(
4 "Hi, %s\n",
5 name(42)
6 );

Identical code segments except for

changes in comments, layouts and

whitespaces.



17/27

Clone Coverage @yegor256

Type-2: Parameterized Clone

Original:

1 var n = name(42);
2 printf("Hi, %s\n", n);

Clone:

1 String name = name(42);
2 printf("Hi, %s\n", name);

Code segments which are

syntactically or structurally similar

other than changes in comments,

identifiers, types, literals, and

layouts.



18/27

Clone Coverage @yegor256

Type-3: Gapped Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 var msg = "Hi, %s\n";
2 var n = name(42);
3 printf(msg, n);

Copied pieces with further

modification such as addition or

removal of statements and changes

in whitespaces, identifiers, layouts,

comments, and types but outcomes

are similar.



19/27

Clone Coverage @yegor256

Type-4: Semantic Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 var s = sprintf(
2 "Hi, %s\n",
3 name(42));
4 print(s);

More than one code segments that

are functionally similar but

implemented by different syntactic

variants.



20/27

Clone Coverage @yegor256

Clones in Linux Kernel

Source: Gerardo Casazza, Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta.

Identifying Clones in the Linux Kernel. In Proceedings of the 1st International Workshop on Source Code Analysis
and Manipulation, pages 90–97. IEEE, 2001. doi:10.1109/SCAM.2001.972670

https://doi.org/10.1109/SCAM.2001.972670


21/27

Clone Coverage @yegor256

Methods of clone detection:

1. Using text

2. Using tokens

3. Using metrics

4. Using “tree matching”

5. Using Program Dependency Graphs (PDG)

6. Using Machine Learning (ML)

7. Using Large Language Models (LLM)



22/27

Clone Coverage @yegor256

Jens Krinke

“For the three Java systems studied, the following

results were found: 1) cloned code is usually older

than non-cloned code, 2) cloned code in a file is

usually older than the non-cloned code in the same

file. Both results suggest that cloned code is more

stable than non-cloned code.”

— Jens Krinke. Is Cloned Code Older Than Non-Cloned Code? In Proceedings of
the 5th International Workshop on Software Clones, 2011.
doi:10.1145/1985404.1985410

https://doi.org/10.1145/1985404.1985410


23/27

Clone Coverage @yegor256

These tools can help detecting duplicate code:

1. IntelliJ IDEA by JetBrains

2. Copy/Paste Detector (CPD) by PMD for Java

3. SonarQube

4. CloneDR by Semantic Designs

5. Simian byQuandary Peak Research

https://pmd.sourceforge.io/pmd-5.5.2/usage/cpd-usage.html
http://www.semdesigns.com/products/clone/
https://simian.quandarypeak.com/download/


24/27

Clone Coverage @yegor256

Simian 4.0.0



25/27

Clone Coverage @yegor256

How Effective LLMs Are?

“A correlation was observed

between the GPTs’ accuracy at

identifying code clones and code

similarity, with both GPT models

exhibiting low effectiveness in

detecting the most complex Type-4

code clones.”

Source: Zixian Zhang and Takfarinas Saber.

Assessing the Code Clone Detection Capability of

Large Language Models. In Proceedings of the 4th
International Conference on CodeQuality (ICCQ),
pages 75–83. IEEE, 2024.

doi:10.1109/ICCQ60895.2024.10576803

https://doi.org/10.1109/ICCQ60895.2024.10576803


26/27

Clone Coverage @yegor256

References
Qurat Ul Ain, Wasi Haider Butt,

Muhammad Waseem Anwar, Farooque Azam, and

Bilal Maqbool. A Systematic Review on Code

Clone Detection. IEEE Access, 2019.
doi:10.1109/access.2019.2918202.

Brenda S. Baker. A Program for Identifying

Duplicated Code. In Proceedings of the 24th
Symposium on the Interface, pages 1–9, 1993.

Kent Beck. Extreme Programming Explained: Embrace
Change. Addison-Wesley, 2000.

doi:10.5555/318762.

Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens

Krinke, and Ettore Merlo. Comparison and

Evaluation of Clone Detection Tools. IEEE
Transactions on Software Engineering, 2007.
doi:10.1109/tse.2007.70725.

Gerardo Casazza, Giuliano Antoniol, Umberto

Villano, Ettore Merlo, and Massimiliano Di Penta.

Identifying Clones in the Linux Kernel. In

Proceedings of the 1st International Workshop on
Source Code Analysis and Manipulation, pages
90–97. IEEE, 2001.

doi:10.1109/SCAM.2001.972670.

Martin Fowler, Kent Beck, John Brant, William

Opdyke, and Don Roberts. Refactoring: Improving
the Design of Existing Code. Addison-Wesley

Professional, 1999. doi:10.5555/311424.

Andrew Hunt and Dave Thomas. The Pragmatic
Programmer: From Journeyman to Master. Pearson
Education, 1999. doi:10.5555/320326.

Jens Krinke. Is Cloned Code Older Than Non-Cloned

Code? In Proceedings of the 5th International
Workshop on Software Clones, 2011.
doi:10.1145/1985404.1985410.

Simone Livieri, Yoshiki Higo, Makoto Matsushita,

and Katsuro Inoue. Analysis of the Linux Kernel

Evolution Using Code Clone Coverage. In

Proceedings of the 4th International Workshop on
Mining Software Repositories, 2007.
doi:10.1109/msr.2007.1.

https://doi.org/10.1109/access.2019.2918202
https://doi.org/10.5555/318762
https://doi.org/10.1109/tse.2007.70725
https://doi.org/10.1109/SCAM.2001.972670
https://doi.org/10.5555/311424
https://doi.org/10.5555/320326
https://doi.org/10.1145/1985404.1985410
https://doi.org/10.1109/msr.2007.1


27/27

Clone Coverage @yegor256

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson Education, 2008.

doi:10.5555/1388398.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

Bertrand Meyer. Object-Oriented Software
Construction. Prentice Hall, 1988.
doi:10.5555/534929.

Edward Yourdon and Larry Constantine. Structured

Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice Hall, 1979.
doi:10.5555/578522.

Zixian Zhang and Takfarinas Saber. Assessing the

Code Clone Detection Capability of Large

Language Models. In Proceedings of the 4th
International Conference on CodeQuality (ICCQ),
pages 75–83. IEEE, 2024.

doi:10.1109/ICCQ60895.2024.10576803.

https://doi.org/10.5555/1388398
https://doi.org/10.5555/1096143
https://doi.org/10.5555/534929
https://doi.org/10.5555/578522
https://doi.org/10.1109/ICCQ60895.2024.10576803

