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Edward Yourdon

“Whenever possible, we wish to maximize fan-in

during the design process. Fan-in is the raison d’être
of modularity: Each instance of multiple fan-in

means that some duplicate code has been avoided.”

— Edward Yourdon and Larry Constantine. Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design. Prentice Hall, 1979.
doi:10.5555/578522

https://doi.org/10.5555/578522
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Bertrand Meyer

“The challenge of reusability is to avoid unneeded

duplication of software by taking advantage of the

commonality between variants. If identical or

near-identical fragments appear in different

modules, it will be difficult to guarantee their

integrity and to ensure that changes or corrections

get propagated to all the needed places.”

— Bertrand Meyer. Object-Oriented Software Construction. Prentice Hall, 1988.
doi:10.5555/534929

https://doi.org/10.5555/534929
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Kent Beck

“You must find a way to eliminate all the duplicated

logic in the system. This is the hardest part of

design for me, because you first have to find the

duplication, and then you have to find a way to

eliminate it. Eliminating duplication naturally leads

you to create lots of little objects and lots of little

methods, because otherwise there will inevitably be

duplication.”

— Kent Beck. Extreme Programming Explained: Embrace Change.
Addison-Wesley, 2000. doi:10.5555/318762

https://doi.org/10.5555/318762
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“With code in one place, you save the space that

would have been used by duplicated code.

Modifications will be easier because you’ll need to

modify the code in only one location. The code will

be more reliable because you’ll have to check only

one place to ensure that the code is right.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143
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Robert C. Martin

“Duplication is the primary enemy of a

well-designed system.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398
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Rainer Koschke

“The problem with code cloning is that errors in the

original must be fixed in every copy. Other kinds of

maintenance changes, for instance, extensions or

adaptations, must be applied multiple times, too.

Yet, it is usually not documented where code was

copied.”

— Stefan Bellon, Rainer Koschke, Giulio Antoniol, Jens Krinke, and Ettore
Merlo. Comparison and Evaluation of Clone Detection Tools. IEEE Transactions
on Software Engineering, 2007. doi:10.1109/tse.2007.70725

https://doi.org/10.1109/tse.2007.70725
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Motivating Example (part I)

Before (wrong):

1 printf("Hi, %s!", getName(42));
2 printf("Hi, %s!", getName(7));
3 printf("Hi, %s!", getName(55));

After (better):

1 sayHello(42);
2 sayHello(7);
3 sayHello(55);
4

5 void sayHello(int id) {
6 var n = getName(id);
7 printf("Hi, %s!", n);
8 }
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Motivating Example (part II)

Before (still not ideal):

1 sayHello(42);
2 sayHello(7);
3 sayHello(55);
4

5 void sayHello(int id) {
6 var n = getName(id);
7 printf("Hi, %s!", n);
8 }

After (perfect):

1 var users = [42, 7, 55];
2 for (id : users) {
3 sayHello(id);
4 }
5

6 void sayHello(int id) {
7 var n = getName(id);
8 printf("Hi, %s!", n);
9 }
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Brenda S. Baker

“Two lines of code are considered to be identical if

they contain the same sequence of characters after

removing comments and white space; the semantics

of the program statements are not analyzed.”

— Brenda S. Baker. A Program for Identifying Duplicated Code. In Proceedings
of the 24th Symposium on the Interface, pages 1–9, 1993
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Up to 38% of lines are involved in duplicates

“The plots are dense near the main

diagonal, implying that most

copies tend to occur fairly locally,

e.g. within the same file or module.

However, certain line segments

occur away from the main

diagonal; it would be interesting to

investigate why the corresponding

sections of code are duplicated.”

Source: Brenda S. Baker. A Program for Identifying

Duplicated Code. In Proceedings of the 24th
Symposium on the Interface, pages 1–9, 1993
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Andy Hunt

“Don’t Repeat Yourself (DRY): Every piece of

knowledge must have a single, unambiguous,

authoritative representation within a system.”

— Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From
Journeyman to Master. Pearson Education, 1999. doi:10.5555/320326

https://doi.org/10.5555/320326
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Kent Beck

“The Rule of Three: The first time you do

something, you just do it. The second time you do

something similar, you wince at the duplication, but

you do the duplicate thing anyway. The third time

you do something similar, you refactor.”

— Martin Fowler, Kent Beck, John Brant, William Opdyke, and Don Roberts.
Refactoring: Improving the Design of Existing Code. Addison-Wesley
Professional, 1999. doi:10.5555/311424

https://doi.org/10.5555/311424
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Yoshiki Higo

“Code-clone analysis is a good vehicle to

quantitatively understand the differences and

improvements between two versions of the same

software system”

— Simone Livieri, Yoshiki Higo, Makoto Matsushita, and Katsuro Inoue.
Analysis of the Linux Kernel Evolution Using Code Clone Coverage. In
Proceedings of the 4th International Workshop on Mining Software Repositories,
2007. doi:10.1109/msr.2007.1

https://doi.org/10.1109/msr.2007.1
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Wasi Haider Butt

“We identified and analyzed 26 Code Clone

Detection (CCD) tools, i.e., 13 existing and 13

proposed/developed. Moreover, 62 open-source

subject systems whose source code is utilized for the

CCD are presented.”

— Qurat Ul Ain, Wasi Haider Butt, Muhammad Waseem Anwar, Farooque
Azam, and Bilal Maqbool. A Systematic Review on Code Clone Detection. IEEE
Access, 2019. doi:10.1109/access.2019.2918202

https://doi.org/10.1109/access.2019.2918202
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Type-1: Exact Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 // Here we print a message
2 // to the console for a user
3 printf(
4 "Hi, %s\n",
5 name(42)
6 );

Identical code segments except for

changes in comments, layouts and

whitespaces.
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Type-2: Parameterized Clone

Original:

1 var n = name(42);
2 printf("Hi, %s\n", n);

Clone:

1 String name = name(42);
2 printf("Hi, %s\n", name);

Code segments which are

syntactically or structurally similar

other than changes in comments,

identifiers, types, literals, and

layouts.
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Type-3: Gapped Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 var msg = "Hi, %s\n";
2 var n = name(42);
3 printf(msg, n);

Copied pieces with further

modification such as addition or

removal of statements and changes

in whitespaces, identifiers, layouts,

comments, and types but outcomes

are similar.
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Type-4: Semantic Clone

Original:

1 printf("Hi, %s\n", name(42));

Clone:

1 var s = sprintf(
2 "Hi, %s\n",
3 name(42));
4 print(s);

More than one code segments that

are functionally similar but

implemented by different syntactic

variants.
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Clones in Linux Kernel

Source: Gerardo Casazza, Giuliano Antoniol, Umberto Villano, Ettore Merlo, and Massimiliano Di Penta.

Identifying Clones in the Linux Kernel. In Proceedings of the 1st International Workshop on Source Code Analysis
and Manipulation, pages 90–97. IEEE, 2001. doi:10.1109/SCAM.2001.972670

https://doi.org/10.1109/SCAM.2001.972670
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Methods of clone detection:

1. Using text

2. Using tokens

3. Using metrics

4. Using “tree matching”

5. Using Program Dependency Graphs (PDG)

6. Using Machine Learning (ML)

7. Using Large Language Models (LLM)
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Jens Krinke

“For the three Java systems studied, the following

results were found: 1) cloned code is usually older

than non-cloned code, 2) cloned code in a file is

usually older than the non-cloned code in the same

file. Both results suggest that cloned code is more

stable than non-cloned code.”

— Jens Krinke. Is Cloned Code Older Than Non-Cloned Code? In Proceedings of
the 5th International Workshop on Software Clones, 2011.
doi:10.1145/1985404.1985410

https://doi.org/10.1145/1985404.1985410
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These tools can help detecting duplicate code:

1. IntelliJ IDEA by JetBrains

2. Copy/Paste Detector (CPD) by PMD for Java

3. SonarQube

4. CloneDR by Semantic Designs

5. Simian byQuandary Peak Research

https://pmd.sourceforge.io/pmd-5.5.2/usage/cpd-usage.html
http://www.semdesigns.com/products/clone/
https://simian.quandarypeak.com/download/
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Simian 4.0.0
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How Effective LLMs Are?

“A correlation was observed

between the GPTs’ accuracy at

identifying code clones and code

similarity, with both GPT models

exhibiting low effectiveness in

detecting the most complex Type-4

code clones.”

Source: Zixian Zhang and Takfarinas Saber.

Assessing the Code Clone Detection Capability of

Large Language Models. In Proceedings of the 4th
International Conference on CodeQuality (ICCQ),
pages 75–83. IEEE, 2024.

doi:10.1109/ICCQ60895.2024.10576803

https://doi.org/10.1109/ICCQ60895.2024.10576803
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