
Object Dimensions

Yegor Bugayenko

Lecture #10 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=jdEFoz-OQ44


2/19

Object Dimensions @yegor256

Object Metrics

•Number of attributes, methods, constructors, destructors

•Number of static attributes, methods

•Number of types/interfaces

•Number of parent and child classes

•Number of annotations

•Number of static blocks

•Number of nested classes

•Number of type parameters (generics)



3/19

Object Dimensions @yegor256

Fernando Brito e Abreu

“Metrics for Object-Oriented Design (MOOD):
Being able to predict some software quality

characteristics based on the design, is one of our

great motivations. This ability will allow the

designing process to be guided, for instance, by

means of heuristics.”

— Fernando Brito and Rogério dos Santos Carapuça. Object-Oriented Software
Engineering: Measuring and Controlling the Development Process. In
Proceedings of the 4th International Conference on Software Quality, pages 1–8,
1994



4/19

Object Dimensions @yegor256

Method Hiding Factor (MHF)

1 class Book {
2 public String title() {
3 return this.read() + ".";
4 }
5 private String read() {
6 // read from database
7 }
8 }

MHFBook = 1/2

“MHF is defined as the ratio of the

sum of the invisibilities of all

methods defined in all classes to

the total number of methods

defined in the system under

consideration.”



5/19

Object Dimensions @yegor256

Attribute Hiding Factor (AHF)

1 class Book {
2 public int id;
3 private File path;
4 public String title() {
5 var txt = Files.read(path);
6 // 1. Find title by ’id’
7 // 2. Return it
8 }
9 }
10

11 var b = new Book();
12 b.id = 42;
13 var t = b.title();

AHFBook = 1/2

“AHF is defined as the ratio of the

sum of the invisibilities of all

attributes defined in all classes to

the total number of attributes

defined in the system under

consideration.”



6/19

Object Dimensions @yegor256

Method Inheritance Factor (MIF)

1 class Book extends Material {
2 @Override
3 public String content() {
4 return "Hello, world!";
5 }
6 public String title() {
7 return "David West";
8 }
9 }

MIFBook = 1/2

“MIF is defined as the ratio of the

sum of the inherited methods in all

classes of the system under

consideration to the total number

of available methods (locally

defined plus inherited) for all

classes.”



7/19

Object Dimensions @yegor256

Attribute Inheritance Factor (AIF)

1 class Material {
2 protected String content;
3 }
4

5 class Book extends Material {
6 private String title;
7 }

AIFBook = 1/2

“AIF is defined as the ratio of the

sum of inherited attributes in all

classes of the system under

consideration to the total number

of available attributes (locally

defined plus inherited) for all

classes.”



8/19

Object Dimensions @yegor256

Polymorphism Factor (PF)

1 class Material {
2 public String content() {
3 return "Hello, world!";
4 }
5 }
6

7 class Book extends Material {
8 public String title() {
9 return "David";
10 }
11 }

PFBook = 0/1

“PF is the number of methods that

redefine inherited methods, divided

by the maximum number of

possible distinct polymorphic

situations.”



9/19

Object Dimensions @yegor256

“Results show that the metrics

could be used to provide an overall

assessment of a software system,

which may be helpful to managers

of software development projects.

However, further empirical studies

are needed before these results can

be generalised.”

Source: Rachel Harrison, Steve J. Counsell, and

Reuben V. Nithi. An Evaluation of the MOOD Set of

Object-Oriented Software Metrics. IEEE Transactions
on Software Engineering, 24(6):491–496, 1998.
doi:10.1109/32.689404

https://doi.org/10.1109/32.689404


10/19

Object Dimensions @yegor256

Chris F. Kemerer

“The inheritance hierarchy, a directed acyclic graph

will be described as a tree structure with classes as

nodes, leaves and a root. In any design application,

there can be many possible hierarchies of classes.

Design choices on the hierarchy employed to

represent the application are essentially choices

about restricting or expanding the scope of

properties of the objects in the application.”

— Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895

https://doi.org/10.1109/32.295895


11/19

Object Dimensions @yegor256

Weighted Methods per Class (WMC)

Consider a class Ci, with methods

M1, . . . ,Mn. Let c1, . . . , cn be the
complexity of the methods. Then:

WMC =

n∑
i=1

ci

If all method complexities are

considered to be unity, then

WMC = n, the number of

methods.

“It can be argued that developers

approach the task of writing a

method as they would a traditional

program, and therefore some

traditional static complexity metric,

such as McCabe’s Cyclomatic

number, may be appropriate.”

Source: Shyam R. Chidamber and Chris F. Kemerer.

A Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895

https://doi.org/10.1109/32.295895


12/19

Object Dimensions @yegor256

Depth of Inheritance Tree (DIT)

1 class Material {
2 public String content() {
3 return "Hello, world!";
4 }
5 }
6

7 class Book extends Material {
8 public String title() {
9 return "David";
10 }
11 }

DITMaterial = 0

DITBook = 1

“DIT is a measure of how many

ancestor classes can potentially

affect this class.”



13/19

Object Dimensions @yegor256

Number of Children (NOC)

1 class Material {
2 public String content() {
3 return "Hello, world!";
4 }
5 }
6

7 class Book extends Material {
8 public String title() {
9 return "David";
10 }
11 }

NOCMaterial = 1

NOCBook = 0

“NOC is a measure of how many

sub-classes are going to inherit the

methods of the parent class.”



14/19

Object Dimensions @yegor256

Response For a Class (RFC)

1 class Trim
2 String value()
3

4 class Book
5 public String title()
6 return new Trim(
7 this.read()
8 ).value();
9 private String read()
10 // read from the DB

RFCBook = 3

“RFC is the count of the set of all

methods that can be invoked in

response to a message to an object

of the class or by some method in

the class.”



15/19

Object Dimensions @yegor256

“Table shows very clearly that linear

Pearson’s correlations between the

studied OO metrics are, in general,

very weak. We conclude that these

metrics are mostly statistically

independent and, therefore, do not

capture a great deal of redundant

information.”

Source: Victor R. Basili, Lionel C. Briand, and

Walcélio L. Melo. A Validation of Object-Oriented

Design Metrics as Quality Indicators. IEEE
Transactions on Software Engineering, 22(10):751–761,
1996. doi:10.1109/32.544352

https://doi.org/10.1109/32.544352


16/19

Object Dimensions @yegor256

“A small number of classes may be responsible for a

large number of the methods that executed in an

application, and that if testing effort were

concentrated on these outlier classes, a bulk of the

dynamic behavior of the object oriented systems can

be checked for customer acceptance.”

— Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895

https://doi.org/10.1109/32.295895


17/19

Object Dimensions @yegor256

Mark Lorenz

“Number of Messages (NOM) measures the number

of messages sent in a method, segregated by type of

message.”

— Mark Lorenz and Jeff Kidd. Object-Oriented Software Metrics: A Practical
Guide. Prentice-Hall, Inc, 1994. doi:10.5555/177063

https://doi.org/10.5555/177063


18/19

Object Dimensions @yegor256

Number of Messages (NOM)

1 class Trim
2 String value()
3

4 class Book
5 public String title()
6 return new Trim(
7 this.read()
8 ).value();
9 private String read()
10 // read from the DB

NOMtitle = 3

“Number of Messages (NOM)

measures the number of messages

sent in a method, segregated by

type of message.”



19/19

Object Dimensions @yegor256

References
Victor R. Basili, Lionel C. Briand, and Walcélio L.

Melo. A Validation of Object-Oriented Design

Metrics as Quality Indicators. IEEE Transactions
on Software Engineering, 22(10):751–761, 1996.
doi:10.1109/32.544352.

Fernando Brito and Rogério dos Santos Carapuça.

Object-Oriented Software Engineering:

Measuring and Controlling the Development

Process. In Proceedings of the 4th International
Conference on Software Quality, pages 1–8, 1994.

Shyam R. Chidamber and Chris F. Kemerer. A

Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):
476–493, 1994. doi:10.1109/32.295895.

Rachel Harrison, Steve J. Counsell, and Reuben V.

Nithi. An Evaluation of the MOOD Set of

Object-Oriented Software Metrics. IEEE
Transactions on Software Engineering, 24(6):
491–496, 1998. doi:10.1109/32.689404.

Mark Lorenz and Jeff Kidd. Object-Oriented Software
Metrics: A Practical Guide. Prentice-Hall, Inc, 1994.
doi:10.5555/177063.

https://doi.org/10.1109/32.544352
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.689404
https://doi.org/10.5555/177063

