
TCC and LCC

Yegor Bugayenko

Lecture #8 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=JOKxjpAglFU

2/16

TCC and LCC @yegor256

“Socrates: I am a lover of these processes of division

and bringing together, as aids to speech and

thought; and if I think any other man is able to see

things that can naturally be collected into one and

divided into many, him I follow after and walk in his

footsteps as if he were a god.”

— Plato. Phaedrus (Dialogue), 370 B.C.

3/16

TCC and LCC @yegor256

Edward Yourdon

“Module cohesion may be conceptualized as the

cement that holds the processing elements of a

module together. In a sense, a high degree of

module cohesion is an indication of close

approximation of inherent problem structure.”

— Edward Yourdon and Larry Constantine. Structured Design: Fundamentals of
a Discipline of Computer Program and Systems Design. Prentice Hall, 1979.
doi:10.5555/578522

https://doi.org/10.5555/578522

4/16

TCC and LCC @yegor256

Andrew Hunt

“We want to design components that are

self-contained: independent, and with a single,

well-defined purpose.”

— Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From
Journeyman to Master. Pearson Education, 1999. doi:10.5555/320326

https://doi.org/10.5555/320326

5/16

TCC and LCC @yegor256

James M. Bieman

“We define two measures of class cohesion based on

the direct and indirect connections of method pairs:

TCC and LCC.”

— James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an
Object-Oriented System. SIGSOFT Software Engineering Notes, 20(51):259–262,
1995. doi:10.1145/223427.211856

https://doi.org/10.1145/223427.211856

6/16

TCC and LCC @yegor256

Connectivity Between Methods in a Class

“An instance variable is directly

used by a method M if the

instance variable appears as a data

token in the method M . The

instance variable may be defined in

the same class as M or in an

ancestor class of the class. DU(M)
is a set of instantce variables

directly used by a method M .”

Source: James M. Bieman and Byung-Kyoo Kang.

Cohesion and Reuse in an Object-Oriented System.

SIGSOFT Software Engineering Notes, 20(51):259–262,
1995. doi:10.1145/223427.211856

https://doi.org/10.1145/223427.211856

7/16

TCC and LCC @yegor256

Tight and Loose Class Cohesion (TCC+LCC)

1 class Rectangle
2 int x, y, w, h;
3 int area()
4 return w * h;
5 int move(int dx, dy)
6 x += dx; y += dy;
7 int resize(int dx, dy)
8 w += dx; h += dy;
9 bool fit()
10 return w < 100
11 && x < 100;

Max possible connections (NP):
N × (N − 1)/2 = 4× 3/2 = 6

Directly connected (NDC = 4):
area+fit, area+resize, move+fit,
resize+fit

Indirectly connected (NIC = 2):
area+move, move+resize

TCC = NDC/NP = 4/6 = 0.66
LCC = (NDC+NIC)/NP = 6/6 = 1.00

8/16

TCC and LCC @yegor256

“If a class is designed in ad hoc manner and

unrelated components are included in the class, the

class represents more than one concept and does not

model an entity. The cohesion value of such a class

is likely to be less than 0.5.”

— James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an
Object-Oriented System. SIGSOFT Software Engineering Notes, 20(51):259–262,
1995. doi:10.1145/223427.211856

https://doi.org/10.1145/223427.211856

9/16

TCC and LCC @yegor256

Steve McConnell

“Cohesion refers to how closely all the routines in a

class or all the code in a routine support a central

purpose—how focused the class is. The ideas of

abstraction and cohesion are closely related—a class

interface that presents a good abstraction usually

has strong cohesion.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143

10/16

TCC and LCC @yegor256

Abstraction

• Color: red
•Weight: 120g

• Price: $0.99

1 var file = {
2 path: ’/tmp/data.txt’,
3 read: function() { ... },
4 write: function(txt) { ... }
5 }

The slide is taken from the “Pain of OOP” (2023) course.

https://github.com/yegor256/painofoop

11/16

TCC and LCC @yegor256

“Isomorphism of the modules (objects) in problem

and solution space is a desirable, in fact essential,

quality for software.”

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

https://doi.org/10.5555/984130

12/16

TCC and LCC @yegor256

Inheritance vs. Cohesion

“Our results show that the classes

that are heavily reused via

inheritance exhibit lower cohesion.

We expected to find that the most

reused classes would be the most

cohesive ones.”

Source: James M. Bieman and Byung-Kyoo Kang.

Cohesion and Reuse in an Object-Oriented System.

SIGSOFT Software Engineering Notes, 20(51):259–262,
1995. doi:10.1145/223427.211856

https://doi.org/10.1145/223427.211856

13/16

TCC and LCC @yegor256

Inheritance is Code Reuse

1 class Manuscript {
2 protected String body;
3 void print(Console console) {
4 console.println(this.body);
5 }
6 }
7 class Article
8 extends Manuscript {
9 void submit(Conference cnf) {
10 cnf.send(this.body);
11 }
12 }

“The Article copies method

print() and attribute body from

the Manuscript , as if it’s not a
living organism, but rather a dead

one from which we inherit its

parts.”

“Implementation inheritance was

created as a mechanism for code

reuse. It doesn’t fit into OOP at all.”

Source: Yegor Bugayenko. Inheritance Is a

Procedural Technique for Code Reuse.

https://www.yegor256.com/160913.html, sep
2016. [Online; accessed 22-09-2024]

https://www.yegor256.com/160913.html

14/16

TCC and LCC @yegor256

Composition over Inheritance

1 class Manuscript
2 protected String body;
3 void print(Console console)
4 console.println(this.body);
5

6 class Article
7 extends Manuscript
8 void submit(Conference cnf)
9 cnf.send(this.body);

1 class Manuscript
2 protected String body;
3 void print(Console console)
4 console.println(this.body);
5

6 class Article
7 Manuscript manuscript;
8 Article(Manuscript m)
9 this.manuscript = m;
10 void submit(Conference cnf)
11 cnf.send(this.body);

Wikipedia: https://en.wikipedia.org/wiki/Composition_over_inheritance

https://en.wikipedia.org/wiki/Composition_over_inheritance

15/16

TCC and LCC @yegor256

TCC+LCC can be calculated by a few tools:

• jPeek for Java

• C++ — don’t know

• Python — don’t know

• JavaScript — don’t know

• C# — don’t know

https://www.jpeek.org

16/16

TCC and LCC @yegor256

References
James M. Bieman and Byung-Kyoo Kang. Cohesion

and Reuse in an Object-Oriented System.

SIGSOFT Software Engineering Notes, 20(51):
259–262, 1995. doi:10.1145/223427.211856.

Yegor Bugayenko. Inheritance Is a Procedural

Technique for Code Reuse.

https://www.yegor256.com/160913.html, sep
2016. [Online; accessed 22-09-2024].

Andrew Hunt and Dave Thomas. The Pragmatic

Programmer: From Journeyman to Master. Pearson
Education, 1999. doi:10.5555/320326.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

Plato. Phaedrus (Dialogue), 370 B.C.

David West. Object Thinking. Pearson Education,

2004. doi:10.5555/984130.

Edward Yourdon and Larry Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice Hall, 1979.
doi:10.5555/578522.

https://doi.org/10.1145/223427.211856
https://www.yegor256.com/160913.html
https://doi.org/10.5555/320326
https://doi.org/10.5555/1096143
https://doi.org/10.5555/984130
https://doi.org/10.5555/578522

