TCC and LCC

YEGOR BUGAYENKO

Lecture #8 out of 24
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=JOKxjpAglFU

2/16

“Socrates: | am a lover of these processes of division
and bringing together, as aids to speech and
thought; and if | think any other man is able to see
things that can naturally be collected into one and
divided into many, him | follow after and walk in his
footsteps as if he were a god.”

— Plato. Phaedrus (Dialogue), 370 B.C.

TCC and LCC Qyegor256

3/16

“Module cohesion may be conceptualized as the
cement that holds the processing elements of a
module together. In a sense, a high degree of
module cohesion is an indication of close
approximation of inherent problem structure.”

— Edward Yourdon and Larry Constantine. Structured Design: Fundamentals of

P / a Discipline of Computer Program and Systems Design. Prentice Hall, 1979.
- doi:10.5555/578522
EDWARD YOURDON

TCC and LCC Qyegor256

https://doi.org/10.5555/578522

TCC and LCC

Davip THOMAS
ANDREW HuUNT

ANDREW HUNT

4/16

“We want to design components that are
self-contained: independent, and with a single,
well-defined purpose.”

— Andrew Hunt and Dave Thomas. The Pragmatic Programmer: From
FJourneyman to Master. Pearson Education, 1999. doi:10.5555/320326

Qyegor256

https://doi.org/10.5555/320326

5/16

“We define two measures of class cohesion based on
the direct and indirect connections of method pairs:

TCC and LCC.”

— James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an
Object-Oriented System. SIGSOFT Software Engineering Notes, 20(51):259-262,
1995. d0i:10.1145/223427.211856

JAMES M. BIEMAN

TCC and LCC Qyegor256

https://doi.org/10.1145/223427.211856

TCC and LCC

6/16

Connectivity Between Methods in a Class

3.1 Connectivity between methods

The direct connectivity between methods is determined
from the class abstraction. If there exists one or more
common instance variables between two method abstrac-
tions then the two corresponding methods are directly
connected.

Two methods that are connected through other di-
rectly connected methods are indirectly connected. The
indirect connection relation is the transitive closure of
direct connection relation. Thus, a method M; is indi-
rectly connected with a method My, if there is a sequence
of methods M>, M,, . . ., My_, such that

My6§ Mz, Myp_16Mn

where M; 6 M; represents a direct connection.

“An instance variable is directly
used by a method M if the
instance variable appears as a data
token in the method M. The
instance variable may be defined in
the same class as M or in an
ancestor class of the class. DU (M)
is a set of instantce variables
directly used by a method M~

Source: James M. Bieman and Byung-Kyoo Kang.
Cohesion and Reuse in an Object-Oriented System.
SIGSOFT Software Engineering Notes, 20(51):259-262,
1995. doi:10.1145/223427.211856

Qyegor256

https://doi.org/10.1145/223427.211856

10

11

TCC and LCC

7/16

Tight and Loose Class Cohesion (TCC+LCC)

class Rectangle
int x, y, w, h;
int area()
return w * h;
int move(int dx, dy)
X += dx; y += dy;
int resize(int dx, dy)
w += dx; h += dy;
bool fit()
return w < 100
&& x < 100;

Max possible connections (NP):
Nx(N—-1)/2=4x3/2=6

Directly connected (NDC = 4):
areatfit, areatresize, move+fit,
resize+fit

Indirectly connected (NIC = 2):
areatmove, movetresize

TCC = NDC/NP = 4/6 = (.66
LCC = (NDC+NIC)/NP = 6/6 = 1.00

Qyegor256

Ea

Cohesion and Reuse in an Object-Oriented System*

James M. Bieman and Byung-Kyoo Kang
Department of Computer Science
Colorado State University
Fort Collins, Colorado 80523 USA

(303) 491-7096, Fax:

: (303) 491-2466

bieman@cs.colostate.edu, kang@ics.colostate.edu

/16

“If a class is designed in ad hoc manner and
unrelated components are included in the class, the

EScmmgroees foseioions class re presents more t han one conce pt an d does not

classes that are reused more frequently via inheritance
exkibit clearly lowes cohesion.

1 Intraduction

Software developers aim for systcms with high cohesion

‘and Jow coupling, The valte of these goals has not been
validated empirically 6], . they have been just-
fed basic of ituition. The f ren

the number of times that 2 comp s

an indicator of eusabiity. Ofcourse, other factors such
s the usefulness of a component are slso components
of reusabilty:

‘Cohesion refers o the “relatedness” of module com-
ponents. A highly cohesive component is one with one
basic function, 1t should be diffcult to split a cobesive

class cohesion nd private reuse in thi

2 Class Cohesion

The components of clas are the instance variables and
methods defined in the class plus those (hat are inher.

of the relative number
of connected methods in the clas,

2.1 Relations between Class Companents
Individual methods are tied together via two mecha-

component. be classificd using an o nisms. One. mechaxism, MIV relations, involves com-
scale that ranges from the least desirable category munication between methods through shared instance
Coincidental the most desirable-—functional variables. The other mechanism, call elations, involves

cohesion [7]. To apply his cohesion model to classes in

ods (LOOM) measure for object-oriented software [3
LCOM is eff i

il
that
M
afee andlor specilcpermissio

SR 5, Seatle, WA,USA

@ 1935 ACM 0-66791.739-1/95/0004...53.50

ftha publication and fs dato appear, and noiice i given
opying sy prrision fhe Ksecion of Cor
inary.To copy ofherise, or 1o republish, requires

the sending of messags dircctly (or indirectly) from one
ethod to auother
An MIV relation s created when two or more class
methods read or Write to the same clas instance vari-
le. We treat shared instance variables 3% gluc that
binds the class methods tagether.

other thiough message passing. Thus, 4 call rlation
an be reflected by the MIV relation; two methods with

binding in object-oriented softwae. However, we have
abscrved very fow cases where dynamic binding afecte

i
shows the MIV relations among class components of

vl indicates that the method corzesponding to the

model an entity. The cohesion value of such a class
is likely to be less than 0.5.”

— James M. Bieman and Byung-Kyoo Kang. Cohesion and Reuse in an
Object-Oriented System. SIGSOFT Software Engineering Notes, 20(51):259-262,
1995. doi:10.1145/223427.211856

TCC and LCC Qyegor256

https://doi.org/10.1145/223427.211856

9/16

“Cohesion refers to how closely all the routines in a
class or all the code in a routine support a central
purpose—how focused the class is. The ideas of
abstraction and cohesion are closely related—a class

interface that presents a good abstraction usually
has strong cohesion.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

N7

STEVE MCcCONNELL

%
W
/f
L}
L]
i

TCC and LCC Qyegor256

https://doi.org/10.5555/1096143

10/16

Abstraction

]

ilvar file = {
| path: ’/tmp/data.txt’,

. Color: red ;| read: function() { ... },
s write: function(txt) { ... }

5|}

« Weight: 120g
e Price: $0.99

The slide is taken from the “Pain of OOP” (2023) course.

TCC and LCC Qyegor256

https://github.com/yegor256/painofoop

11/16

“Isomorphism of the modules (objects) in problem
and solution space is a desirable, in fact essential,
quality for software.”

Object Thinking

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

TCC and LCC Qyegor256

https://doi.org/10.5555/984130

Inheritance vs. Cohesion

Lo 1.0
08 +
0.6 T

04+

Mean of TCCs
Median of TCCs

02 1

0 1-9 10-29 >29

No. of Descendents No. of Descendents

(a) (b}

08 1 =
0.6 +

04 T

Mean of 1.CCs
Median of L.CCs

0.2 +

0.0

0 148 10-29 >2
No. of Descendents No. of Descendents

(c) (d)

Figure 3: Number of descendents and Class Cohesion

TCC and LCC

12/16

“Our results show that the classes
that are heavily reused via
inheritance exhibit lower cohesion.
We expected to find that the most
reused classes would be the most
cohesive ones.”

Source: James M. Bieman and Byung-Kyoo Kang.
Cohesion and Reuse in an Object-Oriented System.
SIGSOFT Software Engineering Notes, 20(51):259-262,
1995. doi:10.1145/223427.211856

Qyegor256

https://doi.org/10.1145/223427.211856

13/16

Inheritance is Code Reuse

i|class Manuscript { “The Article copies method

2| protected String body, print() and attribute body from
»| void print(Console console) 1 the Manuscript, as if it’s not a

4 console.println(this.body); living organism, but rather a dead
5|) one from which we inherit its

6|} parts.”

7lclass Article
s| extends Manuscript {
o| void submit(Conference cnf) {

¢¢ . . .
Implementation inheritance was
created as a mechanism for code

’ . . by
. cnf . send(this.body) ; reuse. It doesn’t fit into OOP at all.
1 + Source: Yegor Bugayenko. Inheritance Is a
o Procedural Technique for Code Reuse.

https://www.yegor256.com/160913.html, sep
2016. [Online; accessed 22-09-2024]

TCC and LCC Qyegor256

https://www.yegor256.com/160913.html

Composition over Inheritance

i1|class Manuscript

2| protected String body,

;| void print(Console console)

4 console.println(this.body) ;

s|class Article

7| extends Manuscript

¢/ void submit(Conference cnf)
9 cnf .send(this.body) ;

10

11

14/16

class Manuscript
protected String body;
void print(Console console)
console.println(this.body);

class Article
Manuscript manuscript;
Article(Manuscript m)
this.manuscript = m;
void submit(Conference cnf)
cnf . send(this.body) ;

Wikipedia: https://en.wikipedia.org/wiki/Composition_over_inheritance

TCC and LCC

Qyegor256

https://en.wikipedia.org/wiki/Composition_over_inheritance

15/16

TCC+LCC can be calculated by a few tools:

« jPeek for Java

« C++ — don’t know

« Python — don’t know

e JavaScript — don’t know

« C# — don’t know

TCC and LCC Qyegor256

https://www.jpeek.org

TCC and LCC

References

James M. Bieman and Byung-Kyoo Kang. Cohesion
and Reuse in an Object-Oriented System.
SIGSOFT Software Engineering Notes, 20(51):
259-262, 1995. do0i:10.1145/223427.211856.

Yegor Bugayenko. Inheritance Is a Procedural
Technique for Code Reuse.
https://www.yegor256.com/160913.html, sep
2016. [Online; accessed 22-09-2024].

Andrew Hunt and Dave Thomas. The Pragmatic

Programmer: From Journeyman to Master. Pearson
Education, 1999. doi:10.5555/320326.

Steve McConnell. Code Complete. Pearson Education,
2004. doi:10.5555/1096143.

Plato. Phaedrus (Dialogue), 370 B.C.

David West. Object Thinking. Pearson Education,
2004. doi:10.5555/984130.

Edward Yourdon and Larry Constantine. Structured
Design: Fundamentals of a Discipline of Computer
Program and Systems Design. Prentice Hall, 1979.
d0i:10.5555/578522.

16/16

Qyegor256

https://doi.org/10.1145/223427.211856
https://www.yegor256.com/160913.html
https://doi.org/10.5555/320326
https://doi.org/10.5555/1096143
https://doi.org/10.5555/984130
https://doi.org/10.5555/578522

