
LCOM 1, 2, 3, 4, 5, ...

Yegor Bugayenko

Lecture #7 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=74YigDo8_BE

2/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Larry Constantine

“Coupling is reduced when the relationships among

elements not in the same module are minimized.

There are two ways of achieving this: minimizing

the relationships among modules and maximizing

relationships among elements in the same module.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115

3/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Source: https://bootcamp.uxdesign.cc/why-product-development-and-design-needs-cohesion-
coupling-87731c84aaa7

https://bootcamp.uxdesign.cc/why-product-development-and-design-needs-cohesion-coupling-87731c84aaa7
https://bootcamp.uxdesign.cc/why-product-development-and-design-needs-cohesion-coupling-87731c84aaa7

4/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Neal Ford

“Architecture is the tension between coupling and

cohesion.”

— Neal Ford. Architecture Is the Tension Between Coupling and Cohesion.
https://nealford.com/. [Online; accessed 15-03-2024]

https://nealford.com/

5/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Glenford J. Myers

“The scale of cohesiveness, from lowest to highest,

follows: 1) Coincidental, 2) Logical, 3) Temporal,

4) Communicational, 5) Sequential, and

6) Functional.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115

6/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Source: https://logicmojo.com/cohesion-and-coupling-in-oops

https://logicmojo.com/cohesion-and-coupling-in-oops

7/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Wayne P. Stevens

“One of the most useful techniques for reducing the

effect of changes on the program is to make the

structure of the design match the structure of the

problem, that is, form should follow function.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115

8/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Coincidental Binding

1 class Helpers {
2 int max(int x, int y);
3 void save(File f, String s);
4 String allCaps(String txt);
5 // ...
6 }

“When there is no meaningful

relationship among the elements in

a module, we have coincidental

binding. Coincidental binding

might result from either of the

following situations: (1) An existing

program is ’modularized’ by

splitting it apart into modules. (2)

Modules are created to consolidate

‘duplicate coding’ in other

modules.”

9/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Logical Binding

1 class StringUtils {
2 String allCaps(String s);
3 String trim(String s);
4 String rightTrim(String s);
5 String leftTrim(String s);
6 String rep(String s, int x);
7 // ...
8 }

“Logical binding, next on the scale,

implies some logical relationship

between the elements of a module.

Examples are a module that

performs all input and output

operations for the program or a

module that edits all data.”

10/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Temporal Binding

1 class SQLStringUtils {
2 int parseInt(String s);
3 float parseFloat(String s);
4 double parseDouble(String s);
5 boolean parseBool(String s);
6 byte[] parseBytes(String s);
7 }

“Temporal binding is the same as

logical binding, except the elements

are also related in time. That is, the

temporally bound elements are

executed in the same time period.”

11/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Communicational Binding

1 class SQLResult {
2 SQLResult(ResultSet r);
3 int parseInt(int p);
4 float parseFloat(int p);
5 double parseDouble(int p);
6 boolean parseBool(int p);
7 byte[] parseBytes(int p);
8 }

“A module with communicational

binding has elements that are

related by a reference to the same

set of input and/or output data. For

example, ’print and punch the

output file’ is communicationally

bound.”

12/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Sequential Binding

1 class SQLResult {
2 SQLResult(ResultSet r);
3 SQLResult parse<T>(int p);
4 T get<T>(int p);
5 }
6

7 int v = new SQLResult()
8 .parse<int>(1)
9 .parse<float>(2)
10 .get<int>(1);

“When the output data from an

element is the input for the next

element, the module is sequentially

bound. Sequential binding can

result from flowcharting the

problem to be solved and then

defining modules to represent one

or more blocks in the flowchart.”

13/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Functional Binding

1 class SQLResult {
2 SQLResult(ResultSet r);
3 SQLResult prepare<T>(
4 Mapping<String, T> m, int p);
5 T read<T>(int p);
6 }
7

8 int v = new SQLResult()
9 .prepare<int>(
10 s -> Integer.parseInt(s), 1)
11 .parse<float>(
12 s -> Float.parseFloat(s), 1)
13 .read<int>(1);

“Functional binding is the strongest

type of binding. In a functionally

bound module, all of the elements

are related to the performance of a

single function.”

14/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

1. Ideal 2. God Object 3. Poorly

selected

boundaries

4. Destructive

decoupling

Source: https://enterprisecraftsmanship.com/posts/cohesion-coupling-difference/

https://enterprisecraftsmanship.com/posts/cohesion-coupling-difference/

15/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Chris Kemerer

“Consider a class with methods m1,m2, . . . ,mn. Let

Vi be a set of instance variables used by method mi.

There are n such sets V1, V2, . . . , Vn. LCOM is the

number of disjoint sets formed by the intersection of

the n sets. The number of disjoint sets provides a

measure for the disparate nature of methods in the

class. Fewer disjoint sets implies greater similarity of

methods.”

— Shyam R. Chidamber and Chris F. Kemerer. Towards a Metrics Suite for
Object Oriented Design. In Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications, pages 197–211, 1991.
doi:10.1145/117954.117970

https://doi.org/10.1145/117954.117970

16/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOM Example (not working)

1 class Rectangle {
2 int x, y, w, h;
3 int area() {
4 return w * h; }
5 int move(int dx, dy) {
6 x += dx; y += dy; }
7 int resize(int dx, dy) {
8 w += dx; h += dy; }
9 bool tall() {
10 return h > 100; }
11 }

M = {area, move, resize, tall}

varea = {w, h}

vmove = {x, y}

vresize = {w, h}

vtall = {h}

LCOM is the number of disjoint

sets formed by the intersection of

the n sets. WTF?

17/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Chris F. Kemerer

“Let P = {(vi, vj)|vi ∩ vj = ∅} and

Q = {(vi, vj)|vi ∩ vj ̸= ∅}. Then, LCOM = |P | − |Q|,
but not less than zero. Thus, the LCOM is a count of

the number of method pairs whose similarity is 0

minus the count of method pairs whose similarity is

not zero.”

— Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895

https://doi.org/10.1109/32.295895

18/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOM Example (working)

1 class Rectangle {
2 int x, y, w, h;
3 int area() {
4 return w * h; }
5 int move(int dx, dy) {
6 x += dx; y += dy; }
7 int resize(int dx, dy) {
8 w += dx; h += dy; }
9 bool tall() {
10 return h > 100; }
11 }

M = {area, move, resize, tall}
varea = {w, h}
vmove = {x, y}
vresize = {w, h}
vtall = {h}

P = {(varea, vmove),
(vmove, vresize)}

Q = {(varea, vresize),
(varea, vtall),
(vresize, vtall)}

LCOM = |P | − |Q| = 2− 3 = −1 → 0

19/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Brian Henderson-Sellers

“LCOM2 equals the percentage of methods that do

not access a specific attribute averaged over all

attributes in the class. If the number of methods or

attributes is zero, LCOM2 is undefined and

displayed as zero.”

— Brian Henderson-Sellers, Larry L. Constantine, and Ian M. Graham.
Coupling and Cohesion (Towards a Valid Metrics Suite for Object-Oriented
Analysis and Design). Object Oriented Systems, 3(3):143–158, 1996

20/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOM2 Example

1 class Rectangle {
2 int x, y, w, h;
3 int area() {
4 return w * h; }
5 int move(int dx, dy) {
6 x += dx; y += dy; }
7 int resize(int dx, dy) {
8 w += dx; h += dy; }
9 bool tall() {
10 return h > 100; }
11 }

ax = 3/4 = 0.75

ay = 3/4 = 0.75

aw = 2/4 = 0.5

ah = 1/4 = 0.25

LCOM2 =
(0.75+0.75+0.5+0.25)/4 = 0.5625

Source:

https://www.aivosto.com/project/help/pm-oo-
cohesion.html

https://www.aivosto.com/project/help/pm-oo-cohesion.html
https://www.aivosto.com/project/help/pm-oo-cohesion.html

21/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Larry Constantine

“LCOM3 is defined as a normalized measure that

considers the number of methods in the class, the

number of attributes, and the average number of

methods that access each attribute. (by ChatGPT)”

— Brian Henderson-Sellers, Larry L. Constantine, and Ian M. Graham.
Coupling and Cohesion (Towards a Valid Metrics Suite for Object-Oriented
Analysis and Design). Object Oriented Systems, 3(3):143–158, 1996

22/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOM3 Example

1 class Rectangle {
2 int x, y, w, h;
3 int area() {
4 return w * h; }
5 int move(int dx, dy) {
6 x += dx; y += dy; }
7 int resize(int dx, dy) {
8 w += dx; h += dy; }
9 bool tall() {
10 return h > 100; }
11 }

LCOM3 = (m− t)/(m− 1) = 1.1875

where

m = 4 (total methods in the class)

t = 0.4375 (how many methods

access one var)

23/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

Martin Hitz

“LCOM4 measures the number of ’connected

components’ in a class. A connected component is a

set of related methods (and class-level variables).

Methods A and B are related if: they both access the

same class-level variable, or A calls B or vice versa.”

— Martin Hitz and Behzad Montazeri. Measuring Coupling and Cohesion in
Object-Oriented Systems. 1995. doi:10.22436/jmcs.09.02.08

https://doi.org/10.22436/jmcs.09.02.08

24/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOM4 Example

1 class Rectangle {
2 int x, y, w, h;
3 int area() {
4 return w * h; }
5 int move(int dx, dy) {
6 x += dx; y += dy; }
7 int resize(int dx, dy) {
8 w += dx; h += dy; }
9 bool tall() {
10 return h > 100; }
11 }

C1 = {x, y, move}

C2 = {w, h, move, resize, tall}

LCOM4 = 2

25/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

LCOMs can be calculated by a few tools:

• jPeek for Java

• CPPDepend for C++

• eslint-plugin-lcom for JavaScript

• lcom for Python

• lcom4go for Go

https://www.jpeek.org
https://www.cppdepend.com/documentation/code-metrics
https://github.com/FujiHaruka/eslint-plugin-lcom
https://pypi.org/project/lcom/
https://github.com/yahoojapan/lcom4go

26/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

jPeek

https://www.jpeek.org

Motivation: “Class cohesion is

considered as one of most

important object-oriented software

attributes. There are over 30

different cohesion metrics invented

so far, but almost none of them

have calculators available. We want

to create such a tool that will make

it possible to analyze code quality

more or less formally.”

https://www.jpeek.org

27/27

LCOM 1, 2, 3, 4, 5, ... @yegor256

References
Shyam R. Chidamber and Chris F. Kemerer. Towards

a Metrics Suite for Object Oriented Design. In

Proceedings of the Conference on Object-Oriented
Programming Systems, Languages, and Applications,
pages 197–211, 1991. doi:10.1145/117954.117970.

Shyam R. Chidamber and Chris F. Kemerer. A

Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):
476–493, 1994. doi:10.1109/32.295895.

Neal Ford. Architecture Is the Tension Between

Coupling and Cohesion.

https://nealford.com/. [Online; accessed
15-03-2024].

Brian Henderson-Sellers, Larry L. Constantine, and

Ian M. Graham. Coupling and Cohesion (Towards

a Valid Metrics Suite for Object-Oriented Analysis

and Design). Object Oriented Systems, 3(3):
143–158, 1996.

Martin Hitz and Behzad Montazeri. Measuring
Coupling and Cohesion in Object-Oriented Systems.
1995. doi:10.22436/jmcs.09.02.08.

Wayne P. Stevens, Glenford J. Myers, and Larry L.

Constantine. Structured Design. IBM Systems
Journal, 13(2):115–139, 1974.
doi:10.1147/sj.132.0115.

https://doi.org/10.1145/117954.117970
https://doi.org/10.1109/32.295895
https://nealford.com/
https://doi.org/10.22436/jmcs.09.02.08
https://doi.org/10.1147/sj.132.0115

