
Coupling

Yegor Bugayenko

Lecture #6 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=G0vN6Ah8-js


2/25

Coupling @yegor256

Larry L. Constantine

“The fewer and simpler the connections between

modules, the easier it is to understand each module

without reference to other modules.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115


3/25

Coupling @yegor256

Source: https://www.geeksforgeeks.org/coupling-in-java/

https://www.geeksforgeeks.org/coupling-in-java/


4/25

Coupling @yegor256

Glenford Myers

“Coupling is the measure of the strength of

association established by a connection from one

module to another. Strong coupling complicates a

system since a module is harder to understand,

change, or correct by itself if it is highly interrelated

with other modules. Complexity can be reduced by

designing systems with the weakest possible

coupling between modules.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115


5/25

Coupling @yegor256

Source: https://www.javatpoint.com/software-engineering-coupling-and-cohesion

https://www.javatpoint.com/software-engineering-coupling-and-cohesion


6/25

Coupling @yegor256

Wayne P. Stevens

“The degree of coupling established by a particular

connection is a function of several factors, and thus

it is difficult to establish a simple index of coupling.

Coupling depends (1) on how complicated the

connection is, (2) on whether the connection refers

to the module itself or something inside it, and

(3) on what is being sent or received.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115–139, 1974. doi:10.1147/sj.132.0115

https://doi.org/10.1147/sj.132.0115


7/25

Coupling @yegor256

Source: https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/

https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/


8/25

Coupling @yegor256

Grady Booch

“However, there is tension between the concepts of

coupling and inheritance because inheritance

introduces significant coupling. On the one hand,

weakly coupled classes are desirable; on the other

hand, inheritance—which tightly couples

superclasses and their subclasses—helps us to

exploit the commonality among abstractions.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

https://doi.org/10.5555/1407387


9/25

Coupling @yegor256

“Collaborations always involve some degree of

coupling between both parties of the collaboration,

so the number of collaborations should be

minimized to the greatest extent possible.”

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

https://doi.org/10.5555/984130


10/25

Coupling @yegor256

“The lack of coupling means that the elements of

our system are better isolated from each other and

from change. This isolation makes it easier to

understand each element of the system.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398


11/25

Coupling @yegor256

Steve Freeman

“Elements are coupled if a change in one forces a

change in the other. Loosely coupled features are

easier to maintain.”

— Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by
Tests. Pearson Education, 2009. doi:10.5555/1655852

https://doi.org/10.5555/1655852


12/25

Coupling @yegor256

“Coupling Between Objects (CBO) — for a class is a

count of the number of other classes to which it is

coupled.”

— Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476–493,
1994. doi:10.1109/32.295895

https://doi.org/10.1109/32.295895


13/25

Coupling @yegor256

“Direct Class Coupling (DCC) — this metric is a

count of the different number of classes that a class

is directly related to. The metric includes classes

that are directly related by attribute declarations

and message passing (parameters) in methods.”

— J. Bansiya and C. G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 2002.
doi:10.1109/32.979986

https://doi.org/10.1109/32.979986


14/25

Coupling @yegor256

Martin Fowler

“The biggest problems come from uncontrolled

coupling at the upper levels. I don’t worry about the

number of modules coupled together, but I look at

the pattern of dependency relationship between the

modules.”

— M. Fowler. Reducing Coupling. IEEE Software, 2001.
doi:10.1109/ms.2001.936226

https://doi.org/10.1109/ms.2001.936226


15/25

Coupling @yegor256

Steve McConnell

“Low-to-medium fan-out means having a given class

use a low-to-medium number of other classes. High

fan-out (more than about seven) indicates that a

class uses a large number of other classes and may

therefore be overly complex. High fan-in refers to

having a high number of classes that use a given

class. High fan-in implies that a system has been

designed to make good use of utility classes at the

lower levels in the system.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143


16/25

Coupling @yegor256

(c) Natalia Kokash, Leiden Institute of Advanced Computer Science



17/25

Coupling @yegor256

“We also found evidence of certain ‘key’ classes

(with both high fan-in and fan-out) and ‘client’ and

‘server’-type classes with just high fan-out and

fan-in, respectively.”

— A. Mubarak, S. Counsell, and R. M. Hierons. An Evolutionary Study of
Fan-in and Fan-Out Metrics in OSS. In Proceedings of the 4th International
Conference on Research Challenges in Information Science (RCIS), 2010.
doi:10.1109/rcis.2010.5507329

https://doi.org/10.1109/rcis.2010.5507329


18/25

Coupling @yegor256

Fan-out, as a metric, is supported by a few tools:

• Checkstyle for Java

• CCCC for C++, C, and Java

•module-coupling-metrics for Python

• effrit for Go

• lizard for JavaScript, C#, TypeScript, Lua, Rust, etc.

https://checkstyle.sourceforge.io/apidocs/com/puppycrawl/tools/checkstyle/checks/metrics/ClassFanOutComplexityCheck.html
https://github.com/sarnold/cccc
https://pypi.org/project/module-coupling-metrics/
https://github.com/Skarlso/effrit
https://github.com/terryyin/lizard


19/25

Coupling @yegor256

Derek Comartin

“Afferent coupling (denoted by Ca) is a metric that

indicates the total number of other

projects/boundaries that are dependent upon it.

Efferent coupling (denoted by Ce) is another metric

that is the verse of Afferent Coupling. It is the total

number of projects that a given project depends on.

Instability another metric that is a ratio:

I = Ce/(Ce + Ca). This metric is a ratio between 0

and 1. With 0 meaning it’s totally stable and 1

meaning it’s unstable.”

— Derek Comartin. Write Stable Code Using Coupling Metrics. https:
//codeopinion.com/write-stable-code-using-coupling-metrics/,
2021. [Online; accessed 15-03-2024]

https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://codeopinion.com/write-stable-code-using-coupling-metrics/


20/25

Coupling @yegor256

Types of Coupling (some of them)

• Content Coupling is when one module modifies or relies on the

internal workings of another module (e.g., accessing local data of

another module).

• Global Coupling is when two modules share the same global data

(e.g., a global variable).

• External Coupling occurs when two modules share an externally

imposed data format, communication protocol, or device interface.

• Control Coupling is one module controlling the flow of another, by

passing it information on what to do (e.g., passing a what-to-do

flag).

• Stamp Coupling is when modules share a composite data structure

and use only a part of it, possibly a different part (e.g., passing a

whole record to a function that only needs one field of it).

• Data Coupling is when modules share data through, for example,

parameters. Each datum is an elementary piece, and these are the

only data shared (e.g., passing an integer to a function that

computes a square root).

• Message Coupling can be achieved by state decentralization (as in

objects) and component communication is done via parameters or

message passing (see Message passing).

• Subclass Coupling describes the relationship between a child and

its parent. The child is connected to its parent, but the parent isn’t

connected to the child.

• Temporal Coupling is when two actions are bundled together into

one module just because they happen to occur at the same time.

Source:

https://wiki.edunitas.com/IT/en/114-10/Coupling-(computer-programming)_1430_eduNitas.html

https://wiki.edunitas.com/IT/en/114-10/Coupling-(computer-programming)_1430_eduNitas.html


21/25

Coupling @yegor256

Fear of Decoupling

1 interface Money {
2 double cents();
3 }
4

5 void send(Money m) {
6 double c = m.cents();
7 // Send them over via the API...
8 }
9

10 class OneDollar implements Money {
11 @Override
12 double cents() {
13 return 100.0d;
14 }
15 }

1 class EmployeeHourlyRate
2 implements Money {
3 @Override
4 double cents() {
5 // Fetch the exchange rate;
6 // Update the database;
7 // Calculate the hourly rate;
8 // Return the value.

“Polymorphism makes sofware

more fragile ... to make it robust!”

Source: Yegor Bugayenko. Fear of Decoupling.

https://www.yegor256.com/180918.html, sep
2018. [Online; accessed 22-09-2024]

https://www.yegor256.com/180918.html


22/25

Coupling @yegor256

Temporal Coupling

Tight coupling (not good):

1 List<String> list =
2 new LinkedList<>();
3 Foo.append(list, "Jeff");
4 Foo.append(list, "Walter");
5 return list;

Loose coupling (good):

1 return Foo.with(
2 Foo.with(
3 new LinkedList<>(),
4 "Jeff"
5 ),
6 "Walter"
7 );

Source: Yegor Bugayenko. Temporal Coupling Between Method Calls.

https://www.yegor256.com/151208.html, dec 2015. [Online; accessed 22-09-2024]

https://www.yegor256.com/151208.html


23/25

Coupling @yegor256

Distance of Coupling

1 class Temperature {
2 private int t;
3 public String toString() {
4 return String.format("%d F", this.t);
5 }
6 }
7

8 Temperature x = new Temperature();
9 String txt = x.toString();
10 String[] parts = txt.split(" ");
11 int t = Integer.parseInt(parts[0]);

“The larger the number, the worse

the design: in good design we are

not supposed to take something

out of a method and then do some

complex processing. The distance

metric will tell us how many times,

and by how much, we violated the

principle of loose coupling.”

Source: Yegor Bugayenko. New Metric: The Distance

of Coupling.

https://www.yegor256.com/201027.html, oct
2020. [Online; accessed 22-09-2024]

https://www.yegor256.com/201027.html


24/25

Coupling @yegor256

References
J. Bansiya and C. G. Davis. A Hierarchical Model for

Object-Oriented DesignQuality Assessment.

IEEE Transactions on Software Engineering, 2002.
doi:10.1109/32.979986.

Grady Booch, Robert A. Maksimchuk, Michael W.

Engle, Bobbi J. Young, Jim Connallen, and Kelli A.

Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.

doi:10.5555/1407387.

Yegor Bugayenko. Temporal Coupling Between

Method Calls.

https://www.yegor256.com/151208.html, dec
2015. [Online; accessed 22-09-2024].

Yegor Bugayenko. Fear of Decoupling.

https://www.yegor256.com/180918.html, sep
2018. [Online; accessed 22-09-2024].

Yegor Bugayenko. New Metric: The Distance of

Coupling.

https://www.yegor256.com/201027.html, oct

2020. [Online; accessed 22-09-2024].

Shyam R. Chidamber and Chris F. Kemerer. A

Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):
476–493, 1994. doi:10.1109/32.295895.

Derek Comartin. Write Stable Code Using Coupling

Metrics. https://codeopinion.com/write-
stable-code-using-coupling-metrics/, 2021.
[Online; accessed 15-03-2024].

M. Fowler. Reducing Coupling. IEEE Software, 2001.
doi:10.1109/ms.2001.936226.

Steve Freeman and Nat Pryce. Growing
Object-Oriented Software, Guided by Tests.
Pearson Education, 2009. doi:10.5555/1655852.

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson Education, 2008.

doi:10.5555/1388398.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

A. Mubarak, S. Counsell, and R. M. Hierons. An

Evolutionary Study of Fan-in and Fan-Out

https://doi.org/10.1109/32.979986
https://doi.org/10.5555/1407387
https://www.yegor256.com/151208.html
https://www.yegor256.com/180918.html
https://www.yegor256.com/201027.html
https://doi.org/10.1109/32.295895
https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://doi.org/10.1109/ms.2001.936226
https://doi.org/10.5555/1655852
https://doi.org/10.5555/1388398
https://doi.org/10.5555/1096143


25/25

Coupling @yegor256

Metrics in OSS. In Proceedings of the 4th
International Conference on Research Challenges in
Information Science (RCIS), 2010.
doi:10.1109/rcis.2010.5507329.

Wayne P. Stevens, Glenford J. Myers, and Larry L.

Constantine. Structured Design. IBM Systems
Journal, 13(2):115–139, 1974.
doi:10.1147/sj.132.0115.

David West. Object Thinking. Pearson Education,

2004. doi:10.5555/984130.

https://doi.org/10.1109/rcis.2010.5507329
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.5555/984130

