Coupling

YEGOR BUGAYENKO

Lecture #6 out of 24
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=G0vN6Ah8-js

2/25

“The fewer and simpler the connections between
modules, the easier it is to understand each module

without reference to other modules.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115-139, 1974. d0i:10.1147/sj.132.0115

LARRY L. CONSTANTINE

Qyegor256

Coupling

https://doi.org/10.1147/sj.132.0115

3/25

Tight coupling: Loose coupling:
1. More Interdependency 1. Less Interdependency
2. More coordination 2. Less coordination
3. More information flow 3. Less information flow

Source: https://www.geeksforgeeks.org/coupling-in-java/

Coupling Qyegor256

https://www.geeksforgeeks.org/coupling-in-java/

4/25

“Coupling is the measure of the strength of

| association established by a connection from one
module to another. Strong coupling complicates a
Y7 system since a module is harder to understand,

| change, or correct by itself if it is highly interrelated
" with other modules. Complexity can be reduced by
designing systems with the weakest possible
coupling between modules.”

GLENFORD MYERS

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115-139, 1974. d0i:10.1147/sj.132.0115

Coupling Qyegor256

https://doi.org/10.1147/sj.132.0115

Coupling

O O
O O

Uncoupled: no
dependencies

(a)

Module Coupling

Loosely Coupled:
Some dependencies

(b)

Highly Coupled:
Many dependencies

(c)

Source: https://www. javatpoint.com/software-engineering-coupling-and-cohesion

5/25

Qyegor256

https://www.javatpoint.com/software-engineering-coupling-and-cohesion

6/25

“The degree of coupling established by a particular
connection is a function of several factors, and thus
it is difficult to establish a simple index of coupling.
Coupling depends (1) on how complicated the
connection is, (2) on whether the connection refers
to the module itself or something inside it, and

(3) on what is being sent or received.”

— Wayne P. Stevens, Glenford J. Myers, and Larry L. Constantine. Structured
Design. IBM Systems Journal, 13(2):115-139, 1974. d0i:10.1147/sj.132.0115

WAYNE P. STEVENS

Coupling Qyegor256

https://doi.org/10.1147/sj.132.0115

Coupling

Lo

Tightly-coupled components are built to fit a
singular purpose, are dependent upon each
other, and not easily reusable.

Decoupled or loosely-coupled components
are more independent and reusable, improving
overall extensibility.

Source: https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/

7/25

Qyegor256

https://nordicapis.com/the-difference-between-tight-coupling-and-loose-coupling/

8/25

'BJECT—(}RmNTED
ANALYSIS AND DESIGN

WITH APPLICATIONS

“However, there is tension between the concepts of
coupling and inheritance because inheritance
introduces significant coupling. On the one hand,
weakly coupled classes are desirable; on the other
hand, inheritance—which tightly couples

| superclasses and their subclasses—helps us to
exploit the commonality among abstractions.”

GRADY BoocH — Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

Coupling -

https://doi.org/10.5555/1407387

9/25

“Collaborations always involve some degree of
coupling between both parties of the collaboration,
so the number of collaborations should be
minimized to the greatest extent possible.”

Object Thinking

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

Coupling Qyegor256

https://doi.org/10.5555/984130

10/25

Clean Code

A Handbook of Agile Software

P

“The lack of coupling means that the elements of
our system are better isolated from each other and
from change. This isolation makes it easier to
understand each element of the system.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

Coupling Qyegor256

https://doi.org/10.5555/1388398

11/25

GROWING
QOBJECT C
SOFTW

“Elements are coupled if a change in one forces a
change in the other. Loosely coupled features are
easier to maintain.”

— Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by
Tests. Pearson Education, 2009. doi:10.5555/1655852

STEVE FREEMAN

Coupling Qyegor256

https://doi.org/10.5555/1655852

A Metrics Suite for Object Oriented Design

Shyam R. Chidamber and Chrs F. Kemerer

il e e rpmaion s 8 e
technology for which estblished pracices have yet o be

evloped.
s reseah aidess s s trough the deel
cpmen nd implennton of 3 new e of et for
00 design. Previous research on software meirics, while
Comtibting 1 o ks underuanding of sohare deel

s i el
e of s Thes e kg » hereica s

T ackin i Qs cssrement poperis 471 bong

e o 1 mpeenaion technlon

" and b o aor i o coles (31

Sty b ol o i o Wind nd Weter, the il b choen o

the theoretical base chasen for the medrics was the ontology of

Genaral tems: Cas, compleiy, design, management, measire-
ment, metrics,abjet oientaton, pe

1. InTrobucTIoN
T s been widely recogrived that a important component

of process improvemen. is the abily to. meas
rocess. Given the central role tht software developmen plays
i the delivery and application of information technalogy.

are increasingly focusing on process improvement
in the softw i ara. This emphasis s had 1
effcts. The first is tha his demand has spured the provision
of & numbe of new roved approsches 10 software
development, with most prominent bein object
orientaion (00). Sec cus on process improvement

ascd the demand for software measures, or metrics

‘wilh which 1o manage th proces. The need for such merics

s et By 190, i . 4
mina s v, T s v el o ST
Dt e spertonof o

T i il o M ot of Tehclgy
EST31S™ S Wadowo St Comie, Ma- 2135 USA: &l

Six design melris were developed, and analytically evaluted
against previously proposed set of measurement principles.
‘An sutomated data collection tool was then developed and
implnnied (0 collst n el e o hesc et
at two field sites i order e their feasibilty and
o gt ways i hich g oy e e s ot
process mprove

T ey comiations of s pape ar e devclopment

a briet descipton of the empirica data colletion sites. The
Resuls section resents the meris, e analytical evaluation,
the empirical data and a manageria interpretton of the data
for cach melric. Some concluding remarks are presenied in

the fina sceton,

L. ReSEARCH PRoSLEN

w0 general types of criicisms that can be

aplid t cument safware metics. The fit caegory ar

thos o cims it e kvl o, comveris
e metics as they are applied 10 trads

wl\wm Gedgn 100 dovclopme

TR Lo N 401707

predicable behavior [34], [47]. This suggests that software

5S040 © 1990 EEE

Coupling

12/25

‘Coupling Between Objects (CBO) — for a class is a
count of the number of other classes to which it is
coupled.”

— Shyam R. Chidamber and Chris F. Kemerer. A Metrics Suite for Object
Oriented Design. IEEE Transactions on Software Engineering, 20(6):476—-493,
1994. doi:10.1109/32.295895

Qyegor256

https://doi.org/10.1109/32.295895

Coupling

4 EEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 26, NO. 1, JANUARY 2002

A Hierarchical Model for Object-Oriented
Design Quality Assessment

Jagdish Bansiya, Member, IEEE, and Carl G. Davis, Fellow, IEEE

In object-
In this mod, . objoct, are eve

reusabilty, lexivitty, information. The

relatonsrip, or lnks, a The

systems. A key attriute of the model

weights, thus providing a

Index Terms—Qualty model, qualily attibutos, design metrics, product metic, abject-oriented metrcs

1 INTRODUCTION

15 demand for quality software continues to intensify

due to our society's increasing dependence on softws
and the often devastating effect that a software error can
have in terms of life, financial loss, or time delays. Today's
software systems must ensure consistent and error free
operation every time they are used. This demand for
increased software quality has resulted in quality being
more of a differentiator between products than it ever has.
been before. In a marketplace of highly competitive
products, the importance of delivering quality is no longer
an advantage but a necessary factor for companies to be
successful. While there is uniform agreement that we need
quality software, the question of how, when, and where you
measure and assure quality are far from settled issues.

‘The switch to the object-oriented paradigm has changed
the clements that we use to assess software quality.
Traditional software product merics that evaluate product
characteristics such as size, complexity, performance, and
quality must be changed to rely on some fundamentally
different notions such as encapsulation, inheritance, and
polymorphism which are inherent in object-orientation.
This has led to the definition of many new metrics [8], [15],
[20] to measure the products of the object-oriented
approa
However, the new object-oriented merics are varied in
what they measure, how they are used in measuring, and
when they are applicable. Many of the newer metrics have
only been validated with small, and sometimes nonrealistic

«J. Bansiya s with the Department of Mathematics nd Computer Science,
California State Universy, Layuard, CA 94522
E-mil: sy e

data sets and, therefore, the practical applicability and
effectiveness of the metrics on large complex projects su
as those encountered in an industrial environment is not
known. Finally, if the goal is assessing the extemal quality.
attributes of the product rather than simply collecting
individual merics, then there must be a well defined way of
connecting the two.

Many of the metrics and quality models currently
available for object-oriented software analyses can be
applied only after a product is complete, or nearly
complete. They rely upon information extracted from the
implementation of the product. This provides information

prior oduct. Thus, th d
for metrics and models that can be applied in the carly
stages of development (requirements and design) to ensure
that the analysis and design have favorable internal proper-
ties that will lead to the development of a quality end

roduct. This would give developers an opportunity to fix
problems, remove irregularities and nonconformance to
standards, and climinate unwanted complexity carly in the
development cycle. This should significantly help in
reducing rework during and after implementation, as well
as designing effective test plans and better project and.
resource planning.

Fortunately, the object-oriented approach naturally lends
itself to an early assessment and evaluation. Object-oriented
‘methodologies require significant effort early in the devel-
opment cycle to identify objects and classes, attributes and
operations, and relationships. Encapsulation, inheritance,
and polymorphism require designers to carefully structure
thed. d b bjects. The

. omputer Scence
i Hiantsuill, Huntsole, AL 35899

Manuscript receied 24 Nov, 1997;recsed 29 Noo, 1998 accpted 27 Ja.

2000.

Recommendad forscceptance by DR, Jf

For informatio on oblaining reprivis o this atice, please send e mail Lo
scOcompute.og, and reference IEEECS Log Numier 105978

result of blueprint
for implementation. Therefore, the approach provides the
information needed to assess the quality of a design’s
classes, structure, and relationships before they are com-
mitted to an implementation.

Rescons sy

“Direct Class Coupling (DCC) — this metric is a
count of the different number of classes that a class
is directly related to. The metric includes classes
that are directly related by attribute declarations
and message passing (parameters) in methods.”

— J. Bansiya and C. G. Davis. A Hierarchical Model for Object-Oriented Design
Quality Assessment. IEEE Transactions on Software Engineering, 2002.
do0i:10.1109/32.979986

13/25

Qyegor256

https://doi.org/10.1109/32.979986

14/25

“The biggest problems come from uncontrolled
coupling at the upper levels. | don’t worry about the
number of modules coupled together, but | look at

the pattern of dependency relationship between the
modules.”

— M. Fowler. Reducing Coupling. IEEE Software, 2001.
&8 doi:10.1109/ms.2001.936226

MARTIN FOWLER

Coupling Qyegor256

https://doi.org/10.1109/ms.2001.936226

15/25

“Low-to-medium fan-out means having a given class
use a low-to-medium number of other classes. High
fan-out (more than about seven) indicates that a
class uses a large number of other classes and may
therefore be overly complex. High fan-in refers to
having a high number of classes that use a given
class. High fan-in implies that a system has been
designed to make good use of utility classes at the
lower levels in the system.”

STEVE MCcCONNELL

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

Coupling Qyegor256

https://doi.org/10.5555/1096143

16/25

Fan-in = number of ingoing dependencies
Fan-out = number of outgoing dependencies

-

Heuristic: a high fan-in/fan-out indicates a high complexity

(c) Natalia Kokash, Leiden Institute of Advanced Computer Science

Coupling Qyegor256

Coupling

An Evolutionary Study of Fan-in and Fan-out
Metrics in OSS

A. Mubarak, S. Counsell and R M.

ons

Department of Information Systems and Computing, Brunel University
Usbridge, UK. Email: steve.counsell@brunel.ac.uk

Abstract- Excessive coupling between object-oriented classes is

In this paper, we investigate versions of five Open Source
Sysems (0SS) osing ontwo well-known coupling metri

 igher prapenyfor Gt sy a strsdup utars
froben. The i of thispape i to xplor e reltomip

v i’ and amont con over multiple
Versons of open-surce software. More specfcally, we explore

" (e “fan-out (.., outgoing.
Wo wied st mnV o eamctcah of e

mv
coupling. m
questions we explore e o u me e clus:s it
large incoming

and sccond, docs ip worsen over time? In other

growth in cach over the course of time. The
1o extract the two metrics from five open-source systems. Two
quetins wae pored or akch svem, Fist kst e the
char of classes exhibitin hest fanin values?
Steond do T and Tamout Inreae - corresponding and

is ? Results i it

in the classes to explain both high and low levels of fan-in and
fan-out. We also found evidence of certain ‘key’ classes (with

high fanin and fan-out) and “client’ and ‘server'-type
classes with just high fan-out and fan-in, respectively. We provide
‘an explanation of the composition and existence of such classes a5
well a for disproportionate increases in each of the two metrics
over time.

Keywords-coupling, Jave, fun-in, fan-out,package.

L INTRODUCTION

Excessive class coupling has often been related 1o the
propensity for falts in software [S]. It is widely believed in
the Object-Oriented (OO) community that excessive coupling
betworn cases cmaes 8 levl of mmplexny e o
complicate subsequent maintena
o maenaoce mhl:m vmcuc:, .c\m mm 3 mghly
coupled to class
engineering or ol fom e syse 1o m.ugm oo
current and potential futwre problems. A problem that
immediately arises however for the dzvelwper vhen
considering re-engineering of classes with hif
Do those clsses have prchibidively large dependencess If
so, then are those coupling_dependencies “incoming’ or
loutgng’ depndence? In hery it s more Al o
mdify s gt cls wil High ncoin outgoing
ine e furmzr s deated e

{he poebl sid-effcs of chage.

words, does the potential maintenance problem become worse:
in terms of fan-in and fan-out values?

1L MOTIVATION AND RELATED WORK.

The research in this paper is motivated by a number of factors,
iy, previos esearch (15 bas shown ths e 8 rde-
tween coupling types — in particular, that between
Couplng trough mporen ackages and the nrduction of
ntemao-he package couplng, In s papr we cxolore
the potential charactri e-offs between fan-in and
o merion e tie. ek e o always expect
potentially problematic classes 1o be re-engincered by
developers through_techniques such as refactoring [9);
however, the practical realities of limited time and resources at
their disposal means that only when classes exhibit
sl bad smels (e excesivecoupling) (9] v they
dealt with. I this paper, we explore, o
by o it become
rtions. Final
eevios researeh [16] whih howed ta e fuin and
out metrics tended to be relatively small for classes removed
from a system. In other words, classes with either high fan-in
andior fan-out may be difficult to move or remove from
system. This question has inspired further examination of
rends inthe two metrics resented.

work,

of software evolution, coupling metrics and the use of OSS
[8]. In terms of software evolution, the laws of Lehman [2]
provide the backdrop for many past evolutionary studics.
Evolution has also been the subject of simulation studis [18]
and this has allowed OSS cvolution to be studied in a
contrasting way to that empiricall. The research presented in
this paper delves into specific evolutionary coupling features

"We also found evidence of certain ‘key’ classes
(with both high fan-in and fan-out) and ‘client’ and
‘server’-type classes with just high fan-out and
fan-in, respectively.

— A. Mubarak, S. Counsell, and R. M. Hierons. An Evolutionary Study of
Fan-in and Fan-Out Metrics in OSS. In Proceedings of the 4th International
Conference on Research Challenges in Information Science (RCIS), 2010.
doi:10.1109/rcis.2010.5507329

17/25

Qyegor256

https://doi.org/10.1109/rcis.2010.5507329

18/25

Fan-out, as a metric, is supported by a few tools:

« Checkstyle for Java

« CCCC for C++, C, and Java

« module-coupling-metrics for Python

. effrit for Go

e lizard for JavaScript, C#, TypeScript, Lua, Rust, etc.

Coupling Qyegor256

https://checkstyle.sourceforge.io/apidocs/com/puppycrawl/tools/checkstyle/checks/metrics/ClassFanOutComplexityCheck.html
https://github.com/sarnold/cccc
https://pypi.org/project/module-coupling-metrics/
https://github.com/Skarlso/effrit
https://github.com/terryyin/lizard

19/25

“Afferent coupling (denoted by Ca) is a metric that
indicates the total number of other
projects/boundaries that are dependent upon it.
Efferent coupling (denoted by Ce) is another metric
that is the verse of Afferent Coupling. It is the total
number of projects that a given project depends on.
Instability another metric that is a ratio:
. | = Ce/(Ce + Ca). This metric is a ratio between 0
DEREK COMARTIN and 1. With 0 meaning it’s totally stable and 1
meaning it’s unstable.”

— Derek Comartin. Write Stable Code Using Coupling Metrics. https:
//codeopinion.com/write-stable-code-using-coupling-metrics/,
2021. [Online; accessed 15-03-2024]

Coupling Qyegor256

https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://codeopinion.com/write-stable-code-using-coupling-metrics/

20/25

Types of Coupling (some of them)

« Content Coupling is when one module modifies or relies on the « Data Coupling is when modules share data through, for example,
internal workings of another module (e.g., accessing local data of parameters. Each datum is an elementary piece, and these are the
another module). only data shared (e.g., passing an integer to a function that

« Global Coupling is when two modules share the same global data computes a square root).

(e.g., a global variable). « Message Coupling can be achieved by state decentralization (as in

« External Coupling occurs when two modules share an externally objects) and component communication is done via parameters or
imposed data format, communication protocol, or device interface. message passing (see Message passing).

« Control Coupling is one module controlling the flow of another, by « Subclass Coupling describes the relationship between a child and
passing it information on what to do (e.g., passing a what-to-do its parent. The child is connected to its parent, but the parent isn’t
flag). connected to the child.

« Stamp Coupling is when modules share a composite data structure « Temporal Coupling is when two actions are bundled together into
and use only a part of it, possibly a different part (e.g., passing a one module just because they happen to occur at the same time.

whole record to a function that only needs one field of it).

Source:
https://wiki.edunitas.com/IT/en/114-10/Coupling- (computer-programming) _1430_eduNitas.html

Coupling Qyegor256

https://wiki.edunitas.com/IT/en/114-10/Coupling-(computer-programming)_1430_eduNitas.html

Coupling

© 0 N O U A W N =

R R R
a A W N =2 O

Fear of Decoupling

interface Money {
double cents();
by

void send(Money m) {

double ¢ = m.cents();

// Send them over via the API...
}

class OneDollar implements Money {
@0verride
double cents() {
return 100.0d;
¥
ks

0 NN O AW N =

class EmployeeHourlyRate

implements Money {

O@0verride

double cents() {
// Fetch the exchange rate;
// Update the database;
// Calculate the hourly rate;
// Return the value.

“Polymorphism makes sofware
more fragile ... to make it robust!”
Source: Yegor Bugayenko. Fear of Decoupling.

https://www.yegor256.com/180918.html, sep
2018. [Online; accessed 22-09-2024]

21/25

Qyegor256

https://www.yegor256.com/180918.html

22/25

Temporal Coupling

Tight coupling (not good): Loose coupling (good):
1| List<String> list = i1|lreturn Foo.with(
»| new LinkedList<>(); »| Foo.with(
;|Foo.append(list, "Jeff"); 3 new LinkedList<>(),
+|Foo.append(list, "Walter"); 4 "Jeff"
s|lreturn list; sl),
o "Walter"
7);

Source: Yegor Bugayenko. Temporal Coupling Between Method Calls.
https://www.yegor256.com/151208 . html, dec 2015. [Online; accessed 22-09-2024]

Coupling Qyegor256

https://www.yegor256.com/151208.html

Coupling

© 0 N O U A W N =

—_ .
-_ O

Distance of Coupling

class Temperature {
private int t;
public String toString() {
return String.format("%d F", this.t);
¥
+

Temperature x = new Temperature();
String txt = x.toString();

String[] parts = txt.split(" ");
int t = Integer.parselnt(parts[0]);

23/25

“The larger the number, the worse
the design: in good design we are
not supposed to take something
out of a method and then do some
complex processing. The distance
metric will tell us how many times,
and by how much, we violated the
principle of loose coupling.”

Source: Yegor Bugayenko. New Metric: The Distance
of Coupling,.
https://www.yegor256.com/201027 . html, oct
2020. [Online; accessed 22-09-2024]

Qyegor256

https://www.yegor256.com/201027.html

Coupling

References

J. Bansiya and C. G. Davis. A Hierarchical Model for
Object-Oriented Design Quality Assessment.
IEEE Transactions on Software Engineering, 2002.
doi:10.1109/32.979986.

Grady Booch, Robert A. Maksimchuk, Michael W.

Engle, Bobbi J. Young, Jim Connallen, and Kelli A.

Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.
doi:10.5555/1407387.

Yegor Bugayenko. Temporal Coupling Between
Method Calls.
https://www.yegor256.com/151208.html, dec
2015. [Online; accessed 22-09-2024].

Yegor Bugayenko. Fear of Decoupling.
https://www.yegor256.com/180918.html, sep
2018. [Online; accessed 22-09-2024].

Yegor Bugayenko. New Metric: The Distance of
Coupling,.
https://www.yegor256.com/201027 .html, oct

24/25

2020. [Online; accessed 22-09-2024].

Shyam R. Chidamber and Chris F. Kemerer. A
Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6):
476-493, 1994. doi:10.1109/32.295895.

Derek Comartin. Write Stable Code Using Coupling
Metrics. https://codeopinion.com/write-
stable-code-using-coupling-metrics/, 2021.
[Online; accessed 15-03-2024].

M. Fowler. Reducing Coupling. IEEE Software, 2001.
d0i:10.1109/ms.2001.936226.

Steve Freeman and Nat Pryce. Growing
Object-Oriented Software, Guided by Tests.
Pearson Education, 2009. doi:10.5555/1655852.

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson Education, 2008.
doi:10.5555/1388398.

Steve McConnell. Code Complete. Pearson Education,
2004. doi:10.5555/1096143.

A. Mubarak, S. Counsell, and R. M. Hierons. An
Evolutionary Study of Fan-in and Fan-Out

Qyegor256

https://doi.org/10.1109/32.979986
https://doi.org/10.5555/1407387
https://www.yegor256.com/151208.html
https://www.yegor256.com/180918.html
https://www.yegor256.com/201027.html
https://doi.org/10.1109/32.295895
https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://codeopinion.com/write-stable-code-using-coupling-metrics/
https://doi.org/10.1109/ms.2001.936226
https://doi.org/10.5555/1655852
https://doi.org/10.5555/1388398
https://doi.org/10.5555/1096143

Coupling

Metrics in OSS. In Proceedings of the 4th
International Conference on Research Challenges in
Information Science (RCIS), 2010.
doi:10.1109/rcis.2010.5507329.

Wayne P. Stevens, Glenford J. Myers, and Larry L.

Constantine. Structured Design. IBM Systems
Journal, 13(2):115-139, 1974.
doi:10.1147/sj.132.0115.

David West. Object Thinking. Pearson Education,
2004. doi:10.5555/984130.

25/25

Qyegor256

https://doi.org/10.1109/rcis.2010.5507329
https://doi.org/10.1147/sj.132.0115
https://doi.org/10.5555/984130

