
Lines of Code (LoC)

Yegor Bugayenko

Lecture #1 out of 24

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=q9Gr2xguP5I


2/25

Lines of Code (LoC) @yegor256

1. Quality of code means

maintainability: how quickly other

programmers can understand your code.



3/25

Lines of Code (LoC) @yegor256

“It has been suggested that there is some law of

nature telling us that the amount of intellectual

effort needed grows with the square of program

length. But, thank goodness, no one has been able

to prove this law. And this is because it need not be

true.”

— Edsger W. Dijkstra. The Humble Programmer. Communications of the ACM,
15(10):859–866, 1972. doi:10.1145/355604.361591

https://doi.org/10.1145/355604.361591


4/25

Lines of Code (LoC) @yegor256

“One of the most overlooked programming skills is

the ability to read a program, an activity the

programmer is called upon to do with surprising

frequency.”

— Lionel E. Deimel Jr. The Uses of Program Reading. ACM SIGCSE Bulletin, 17
(2):5–14, 1985. doi:10.1145/382204.382524

https://doi.org/10.1145/382204.382524


5/25

Lines of Code (LoC) @yegor256

“Whatever approach is used, it is clear that a central

activity in software maintenance is reading. In

maintenance, the main role of source code is not as

a compilable entity, but as a human-readable

statement of the intent and mechanism of the

program.”

— Darrell R. Raymond. Reading Source Code. In Proceedings of the Conference
of the Centre for Advanced Studies on Collaborative Research, pages 3–16, 1991.
doi:10.5555/962111.962113

https://doi.org/10.5555/962111.962113


6/25

Lines of Code (LoC) @yegor256

“A programmer depends upon other people’s

programs. These are often maldesigned, poorly

implemented, incompletely delivered (no source

code or test cases), and poorly documented. So he

must spend hours studying and fixing things that in

an ideal world would be complete, available, and

usable.”

— Frederick P. Brooks Jr. The Mythical Man-Month: Essays on Software
Engineering. Pearson Education, 1995. doi:10.5555/540031

https://doi.org/10.5555/540031


7/25

Lines of Code (LoC) @yegor256

“We want to establish the idea that a computer

language is not just a way of getting a computer to

perform operations but rather that it is a novel

formal medium for expressing ideas about

methodology. Thus, programs must be written for

people to read, and only incidentally for machines to

execute.”

— Harold Abelson and Gerald Jay Sussman. Structure and Interpretation of
Computer Programs. The MIT Press, 1996. doi:10.5555/26777

https://doi.org/10.5555/26777


8/25

Lines of Code (LoC) @yegor256

“Indeed, the ratio of time spent reading vs. writing is

well over 10:1. We are constantly reading old code as

part of the effort to write new code. Because this

ratio is so high, we want the reading of code to be

easy, even if it makes the writing harder.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398


9/25

Lines of Code (LoC) @yegor256

Dustin Boswell

“Code should be written to minimize the time it

would take for someone else to understand it. It’s so

important that we call it The Fundamental Theorem

of Readability.”

— Dustin Boswell and Trevor Foucher. The Art of Readable Code, 2011



10/25

Lines of Code (LoC) @yegor256

2. Everybody wants higher quality of

code, but nobody knows how to measure

it.



11/25

Lines of Code (LoC) @yegor256

“It’s not enough to make claims about your

software; you must support your claims with

measurable evidence.”

— Shari Lawrence Pfleeger. Software Metrics: Progress After 25 Years? IEEE
Software, 25(6):32–34, 2008. doi:10.1109/MS.2008.160

https://doi.org/10.1109/MS.2008.160


12/25

Lines of Code (LoC) @yegor256

Mariza A. S. Bigonha

“The application of thresholds could lower the cost

of software quality evaluation since they can reduce

the amount of software code that should be

inspected. Therefore, the thresholds provide a way

for quantitative and qualitative evaluations to

complement each other, leading to a more efficient

quality assessment of object-oriented software

systems.”

— Tarcísio G. S. Filó, Mariza A. S. Bigonha, and Kecia A. M. Ferreira. Evaluating
Thresholds for Object-Oriented Software Metrics. Journal of the Brazilian
Computer Society, 30(1):313–346, 2024. doi:10.5753/jbcs.2024.3373

https://doi.org/10.5753/jbcs.2024.3373


13/25

Lines of Code (LoC) @yegor256

To evaluate our catalog, in that

work, we handled a case study to

assess proprietary software from a

public organization with a bad

internal quality to verify the

proposed thresholds’ ability to

indicate it.

Source: Tarcísio G. S. Filó, Mariza A. S. Bigonha, and

Kecia A. M. Ferreira. Evaluating Thresholds for

Object-Oriented Software Metrics. Journal of the
Brazilian Computer Society, 30(1):313–346, 2024.
doi:10.5753/jbcs.2024.3373

Source: Tarcísio G. S. Filó, Mariza Bigonha, and Kecia

Ferreira. A Catalogue of Thresholds for

Object-Oriented Software Metrics, 2015

https://doi.org/10.5753/jbcs.2024.3373


14/25

Lines of Code (LoC) @yegor256

3. Size of code is the key contributor to

its quality, while Lines of Code (LoC) is

the basic measurement of size.



15/25

Lines of Code (LoC) @yegor256

“Studies have found that larger routines are more

error-prone than smaller ones. Keeping routines

short helps reduce errors and makes the code easier

to maintain.”

— Steve McConnell. Code Complete. Pearson Education, 2004.
doi:10.5555/1096143

https://doi.org/10.5555/1096143


16/25

Lines of Code (LoC) @yegor256

“The first rule of functions is that they should be

small. The second rule of functions is that they

should be even smaller than that.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398


17/25

Lines of Code (LoC) @yegor256

4. It may be wrong to measure

productivity of a programmer by

counting lines of code, but for the quality

of code the LoC metric is a perfect

indicator.



18/25

Lines of Code (LoC) @yegor256

cloc.pl

https://github.com/AlDanial/cloc

https://github.com/AlDanial/cloc


19/25

Lines of Code (LoC) @yegor256

5. In 2011, Uncle Bob suggested that

200 lines per Java class is a good

guideline to stay below.

https://softwareengineering.stackexchange.com/questions/66523


20/25

Lines of Code (LoC) @yegor256

6. Instead of counting lines, it may be

more reasonable to count NCSS (Non

Commenting Source Statements), but

not always.



21/25

Lines of Code (LoC) @yegor256

LoC vs NCSS

1 #!/bin/bash
2 set -e
3

4 # Simple intro:
5 printf "Hello, %s!
6 Your balance is %d." \
7 "${name}" \
8 "$(psql ’SELECT balance
9 FROM user WHERE id = 42’)"

Lines of Code = ?

NCSS = ?



22/25

Lines of Code (LoC) @yegor256

7. There are 27.8M lines of C code in

Linux kernel. What does it tell us?

https://www.linux.com/news/linux-in-2020-27-8-million-lines-of-code-in-the-kernel-1-3-million-in-systemd/


23/25

Lines of Code (LoC) @yegor256

Largest Open Source Projects

Found it onQuora.

How many lines of code are in your

repositories? How many lines of

code you write every week? How

many lines of code you delete every

week? How about annually?

https://www.quora.com/What-are-some-open-source-projects-with-the-largest-complexity-by-lines-of-code-or-developer-effort/answer/Felix-Zaslavskiy


24/25

Lines of Code (LoC) @yegor256

8. Java is two times more verbose than

Ruby. Does it mean the quality of an

average Ruby code is higher?

http://jameshfisher.github.io/languageredundancy/


25/25

Lines of Code (LoC) @yegor256

References
Harold Abelson and Gerald Jay Sussman. Structure

and Interpretation of Computer Programs. The MIT

Press, 1996. doi:10.5555/26777.

Dustin Boswell and Trevor Foucher. The Art of

Readable Code, 2011.

Frederick P. Brooks Jr. The Mythical Man-Month:
Essays on Software Engineering. Pearson
Education, 1995. doi:10.5555/540031.

Lionel E. Deimel Jr. The Uses of Program Reading.

ACM SIGCSE Bulletin, 17(2):5–14, 1985.
doi:10.1145/382204.382524.

Edsger W. Dijkstra. The Humble Programmer.

Communications of the ACM, 15(10):859–866, 1972.

doi:10.1145/355604.361591.

Tarcísio G. S. Filó, Mariza Bigonha, and Kecia

Ferreira. A Catalogue of Thresholds for

Object-Oriented Software Metrics, 2015.

Tarcísio G. S. Filó, Mariza A. S. Bigonha, and Kecia

A. M. Ferreira. Evaluating Thresholds for

Object-Oriented Software Metrics. Journal of the
Brazilian Computer Society, 30(1):313–346, 2024.
doi:10.5753/jbcs.2024.3373.

Robert C. Martin. Clean Code: A Handbook of Agile
Software Craftsmanship. Pearson Education, 2008.

doi:10.5555/1388398.

Steve McConnell. Code Complete. Pearson Education,

2004. doi:10.5555/1096143.

Shari Lawrence Pfleeger. Software Metrics: Progress

After 25 Years? IEEE Software, 25(6):32–34, 2008.
doi:10.1109/MS.2008.160.

Darrell R. Raymond. Reading Source Code. In

Proceedings of the Conference of the Centre for
Advanced Studies on Collaborative Research, pages
3–16, 1991. doi:10.5555/962111.962113.

https://doi.org/10.5555/26777
https://doi.org/10.5555/540031
https://doi.org/10.1145/382204.382524
https://doi.org/10.1145/355604.361591
https://doi.org/10.5753/jbcs.2024.3373
https://doi.org/10.5555/1388398
https://doi.org/10.5555/1096143
https://doi.org/10.1109/MS.2008.160
https://doi.org/10.5555/962111.962113

