Model Checking

YEGOR BUGAYENKO

Lecture #9 out of 10
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=jSuSo4JnYQI

2/19

Motivating Example
The Theory
Model-less Model Checking

Further Reading/Watching

Model Checking Qyegor256

Example Theory Model-less Literature 3/19

Chapter #1:

Motivating Example

Model Checking Qyegor256

Example Theory Model-less Literature

[Div by Zero ProMeLa SPIN Monitor Assertion]
Div by Zero

// Process no. 1:

extern int x; x =0

int measure() {

1/ x

if (x 1= 0) {
y = 1.0/ x;
Iy

extern double y; N
y
O]

¥

4/19
// Process no. 2: T
extern int x; x =x + 1
void roll() { |
X += 1; x > 10
if (x > 10) {
x -= 10; \\\ G
X =X -
ks
} O

Can we detect “division by zero” using symbolic execution? Is “division by

zero” the only error here?

Model Checking

Qyegor256

Example Theory Model-less Literature 5/19

[Div by Zero ProMeLa SPIN Monitor Assertion]

ProMeLa (Process Meta Language)

extern int x; int x; bool dbz;
extern double y; acz;vé'PizizY}f measure() {
int measure() { if
if (x 1=0) { 3¢ <;!=0> -> dbz = (x == 0)
y = 1.0 / x; . SK1p
} od
} +
. active proctype roll() {
void roll() A do :: true ->
x += 1; X =x + 1;
. if
1t (X g 10) { x> 10 > x =x - 10
x -= 10; :: skip
} fi
d
¥ | °

Model Checking Qyegor256

Example Theory Model-less Literature 6/19

[Div by Zero ProMeLa SPIN Monitor Assertion]

SPIN (Simple ProMelLa Interpreter)

int x; bool dbz; $ spin main.pml | head
active proctype measure() { x =1
do :: true -> X =2
if x =3
(x 1= 0) -> dbz = (x == 0) x =4
;. skip X =295
fi X =6
od x =7
b x = 8
active proctype roll() { x =9
do :: true -> x =10
x =x+1; $ spin main.pml | tail
if
ox > 10 ->x =x - 10
;. skip
fi; . .
printf ("x = %d\n", x): Just checkout this repo and run make, the spin
X od binary will be compiled.

Model Checking Qyegor256

https://github.com/nimble-code/Spin

Example Theory Model-less Literature

[Div by Zero ProMeLa SPIN Monitor Assertion]

Monitoring Process

int x; bool dbz;
active proctype measure() {
do :: true ->
if
r (x 1=0) -> dbz = (x == 0)
;1 skip
fi
od
+
active[2] proctype roll() {
do :: true ->
X =x + 1;
if
ox > 10 > x =x - 10
;1 skip
fi
od
+

Model Checking

7/19

active proctype monitor() {
do :: true ->
assert(!dbz) ;
assert(x >= 0);
od
ks

Pay attention to the [2] suffix after the
active keyword. It tells SPIN to start two
instances of the roll process.

Qyegor256

Example Theory Model-less Literature

[Div by Zero ProMeLa SPIN Monitor Assertion]

Fail on Assertion

int x; bool dbz;
active proctype measure() {

do :: true ->
if
o (x 1= 0) -> dbz = (x == 0)
;1 skip
fi
od }
active[2] proctype roll() {
do :: true ->
x =x + 1;
1f
x> 10 -> x =x - 10
;. skip
fi
od }
active proctype monitor() {
do :: true -> assert(!dbz); assert(x >= 0); od

Iy

Model Checking

8/19

$ spin main.pml
spin: main.pml:22, Error: assertion violated
spin: text of failed assertion: assert((x>=0))
#processes: 4

x = -9

dbz = 0
584: proc 3 (monitor:1) main.pml:22 (state 3)
584: proc 2 (roll:1) main.pml:17 (state 7)
584: proc 1 (roll:1) main.pml:18 (state 9)
584: proc 0 (measure:1) main.pml:9 (state 8)
4 processes created

Qyegor256

Example Theory Model-less Literature 9/19

Chapter #2:

The Theory

Model Checking Qyegor256

Example Theory Model-less Literature 10/19

Model checking is a method for checking whether a finite-state model of a
system meets a given specification.

[Idea Model LTL]

1. Represent software as a model
2. Define constraints on the model (using temporal logic)
3. Evaluate the model until constraints are violated/met

4. Refine the model and constraints

Model Checking Qyegor256

Example Theory Model-less Literature 11/19

[Idea Model LTL]

$ spin -f "[](p U a)" $ spin -f "[]<>p"
never { never {
TO: TO:
if if
{(p} -> goto TO :: (true) -> goto TO
:: {g) -> goto accept :: (p) -> goto accept
fi; £i;
accept: accept:
if if
({(p) || (a)) -> goto TO :: (true) -> goto TO
fi fi

) }

Fig. 3. PROMELA syntax for two LTL formulae.

P (T_"tz b |q| q (e @2 :,e (

Fig. 4. Biichi automata for the LTL formulae [] (pUqg) (left) and []<> p (right).

The picture is taken from “The Model Checker SPIN” paper by Gerard J. Holzmann.

Model Checking Qyegor256

Example Theory Model-less

[Idea Model LTL]

Model Checking

Literature

Linear Temporal Logic

The semantics for the temporal operators are pictorially presented as follows.

Textual Symbolic Explanation Diagram

Unary operators:

X @) neXt: ¢ has to hold at the next state. .—:2 o e
Fo Qp Finally: ¢ eventually has to hold (somewhere on the subsequent path). > e
G ¢ O Globally: ¢ has to hold on the entire subsequent path. » 2y 09

Binary operators:

hold at the current or a future position.

wUo YUy Until: ¢ has to hold at least until ¢ becomes true, which must hold at the current or a future position. bV vy v o
WRo BRo tF::ja(laease: ¢ has to.be true until and including the point where first becomes true; if ¢ never becomes E—»E ~~~~~~~~~~~~ %—?;w ~~~~~~~~~ :p
, @ must remain true forever. e e e
l: Y Y ¢
yWo Y Wop Weak until: ¢ has to hold at least until ¢; if ¢ never becomes true, ¢ must remain true forever. v " " vy
e N
uMo | b M o Strong release: ¢ has to be true until and including the point where ¢ first becomes true, which must » 0 o oW

12/19

Qyegor256

Example Theory Model-less Literature 13/19

Chapter #3:

Model-less Model Checking

Model Checking Qyegor256

Example Theory Model-less Literature

[Race Condition Explosion JPF ChatGPT]

A race condition is the condition of where the system’s substantive
behavior is dependent on the sequence or timing of other uncontrollable
events.

public class Race { $ javac Race.java
static int d = 42; $ while true; do java Race; done
public static void main (String[] args) x = 10
throws Exception { x =10
new Thread(x = 10
O ->A x = 10
d = 0; Exception in thread "main"
} java.lang.ArithmeticException: / by zero
) .start Q) ; at Race.main(Race.java:9)
System.out.printf("x = %d\n", 420 / d); x = 10
¥ x = 10
+ ~C

Model Checking

14/19

Qyegor256

Example Theory Model-less Literature

[Race Condition Explosion JPF ChatGPT]

States and Their Explosion

public class Race { O
static int d = 42; l
public static void main (String[] args)
throws Exception { d — 42| s
new Thread(

O -> 1 pd g

d = 0;

, d = 0| 9 printf
) .start(); l l
System.out.printf("x = %d\n", 420 / d);

} error ©

+
As the number of state variables in the system increases, the size of the

system state space grows exponentially. This is called the state explosion
problem.

Model Checking

15/19

Qyegor256

Example Theory Model-less Literature

[Race Condition Explosion JPF ChatGPT]

Java PathFinder

$ java -jar build/RunJPF.jar src/examples/Race.jpf
JavaPathfinder core system v8.0 (rev 3408119d115e539956a3d920e22e856e05bb9d23)
- (C) 2005-2014 United States Government. All rights reserved.

system under test
Race.main()

0 search started: 4/21/23 5:43 AM
X=

error 1
gov.nasa.jpf.listener.PreciseRaceDetector
race for field Race.d
main at Race.main(Race.java:9)
"System.out.printf("x = %d\n", 420 / d);" READ: getstatic Race.d
Thread-1 at Race.lambda$main$O(Race. java:6)
"d = 0;" WRITE: putstatic Race.d

—— ransition #0 thread: O
gov.nasa. jpf.vm.choice.ThreadChoiceFromSet {id:"ROOT" 1/1 isCascaded:false}

[6345 insn w/o sources]

Race.java:2 . static int d = 42;

Race.java:1 : public class Race {
[1 insn w/o sources]

Race.java:4 : new Thread(

[145 insn w/o sources]

Model Checking

16/19

Race.java:8 :).start();

[1 insn w/o sources]
—— ransition #1 thread:_1
gov.nasa. jpf.vm.choice.ThreadChoiceFromSet {id:"START" 2/2 isCascaded:false}

[3 insn w/o sources]

Race.java:6 :d = 0;
—— ransition #2 thread: 0O
gov.nasa. jpf.vm.choice.ThreadChoiceFromSet {id:"SHARED_ CLASS" ,1/2,isCascaded:false}

[2 insn w/o sources]

Race.java:9 : System.out.printf("x %d\n", 420 / d);
—— ition #3 thread: O
gov.nasa. jpf.vm.choice.ThreadChoiceFromSet {id:"SHARED_ CLASS" ,1/2,isCascaded:false}

Race.java:9 : System.out.printf("x %d\n", 420 / d);

; ; results
error #1: gov.nasa.jpf.listener.PreciseRaceDetector

"race for field Race.d main at Race.main(Race.jav..."

statistics
elapsed time: 00:00:00
states: new=6,visited=0,backtracked=2,end=1
search: maxDepth=4,constraints=0
choice generators: thread=5 (signal=0,lock=1,sharedRef=2,...
heap: new=741,released=22,maxLive=722,gcCycles=4
instructions: 6546
max memory: 491MB
loaded code: classes=83,methods=1817

search finished: 4/21/23 5:43 AM

Qyegor256

Example Theory Literature 17/19

[Race Condition Explosion JPF]

Do you see any problems with this Java code: To avoid this issue, you can use synchronization or locks to ensure that the updates to 'd' are

completed before it is accessed in the main thread. Alternatively, you can use Java's volatile
public class Foo {
staticintd =42;
public static void main (String[] args) immediately. Here's an example using synchronization:

keyword to ensure that changes to 'd' made by one thread are visible to other threads

throws Exception {

new Thread(typescript) Copy code

0->{
d=0;

} int d = H

).start(); void main ([] args)

System.out.printf("x = %d\n", 420 / d); throws {

} lock =
} (

(lock) {

Yes, there is a problem with this Java code.

The issue is that the code is creating a new thread and updating the value of the static
variable 'd' inside that thread. At the same time, the main thread is trying to access the value
of 'd' to perform a division operation. (lock) {

.out. (
Since the main thread and the new thread are executing concurrently, there is no guarantee

that the new thread will finish updating the value of 'd' before the main thread tries to access

it. If the new thread updates 'd' to O before the division operation in the main thread, the code

will throw a division-by-zero exception.

This code uses an object 'lock’ to synchronize access to 'd. The new thread acquires the
lock, updates 'd', and then releases the lock. The main thread also acquires the lock before
accessing 'd’, ensuring that it sees the updated value. This way, the code avoids the

possibility of a division-by-zero exception.

Model Checking Qyegor256

Example Theory Model-less Literature 18/19

Chapter #4:

Further Reading/Watching

Model Checking Qyegor256

Example Theory Model-less Literature 19/19

Introduction lecture by Joost-Pieter Katoen

A Primer on Model Checking by Mordechai Ben-Ari

The Model Checker SPIN by Gerard J. Holzmann

References

Model Checking Qyegor256

https://www.youtube.com/watch?v=VHWEldcSx14
https://spinroot.com/spin/Doc/p40-ben-ari.pdf
http://spinroot.com/spin/Doc/ieee97.pdf

