
Symbolic Execution

Yegor Bugayenko

Lecture #8 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=PaCEIGcnx80


2/31

Symbolic Execution @yegor256

In Theory

In Practice

Test Case Generation

Concolic Testing

Further Reading/Watching



In Theory In Practice Test Case Generation Concolic Testing Literature 3/31

Symbolic Execution @yegor256

Chapter #1:

In Theory



In Theory In Practice Test Case Generation Concolic Testing Literature

[ CFG Feasibility Infeasible Symbols PC Solver ]

4/31

Symbolic Execution @yegor256

Control Flow Graph

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

a := a - 4

a == 0

error

42 / a
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Path Feasibility

A path is feasible if there exists an input I to the program that covers the

path; i.e., when program is executed with I as input, the path is taken.

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

a := a - 4

a == 0

error

42 / a
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Infeasible Path

A path is infeasible if there exists no input I that covers the path.

int f(int x) {
int a = x * x;
if (a < 0)

error("Too small!");
return 42 / a;

}

◦

a := x * x

a

a < 0

b

error

c

42 / a

d
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Symbols

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

x 7→ X

a := a - 4

x 7→ X, a 7→ 2X

a == 0

x 7→ X, a 7→ 2X − 4

error

x 7→ X, a 7→ 2X − 4

42 / a
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Path Conditions

Path condition is a condition on the input symbols such that if a path is

feasible its path-condition is satisfiable.

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

x 7→ Xtt

a := a - 4

x 7→ X, a 7→ 2Xtt

a == 0

x 7→ X, a 7→ 2X − 4tt

error

x 7→ X, a 7→ 2X − 42X − 4 = 0

42 / a
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Constraint Solver

A constraint solver is a tool that finds satisfying assignments for a

constraint, if it is satisfiable.

A solution of the constraint is a set of assignments, one for each free

variable that makes the constraint satisfiable.

Constraint:

x 7→ X, a 7→ 2X − 4

2X − 4 = 0

Solution:

X = 2
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Chapter #2:

In Practice
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SAT Solvers

SAT solver is a computer program which aims to solve the Boolean
satisfiability problem: whether the variables of a given Boolean formula

can be consistently replaced by the values TRUE or FALSE in such a way

that the formula evaluates to TRUE.

Examples:

a ∧ b → . . .

a ∧ b ∧ ¬a → . . .

a ∨ b ∨ ¬a → . . .

a ∧ (ff ∨ tt) → . . .

All expressions are in Boolean logic.
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SMT Solvers

SMT solver is a computer program which aims to solve the satisfiability
modulo theories: determine whether a mathematical formula is satisfiable.

Examples:

a < 5 ∧ a > 3 → . . .

a < 5 ∧ f (a) > 42 → . . .

a < 5 ∨ a > 10 ∨ ¬a → . . .

a ∧ ff ∧ x = 7 → . . .

SMT solvers: Z3, cvc5, Yices, and many more...
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Unsolvable Constraints

Symbolic execution cannot handle unsolvable or almost unsolvable

constraints.

void enter(String p) {
int h = sha256(p);
if (!h.endsWith("68f728")) {

error("Access denied!");
}
// You are welcome!

}

Path constraint:

p 7→ P

H 7→ sha256(P )

endsWith(H) = tt
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Path Explosion

Path explosion refers to the fact that the number of control-flow paths in a

program grows exponentially with an increase in program size and can

even be infinite in the case of programs with unbounded loop iterations.

int a = 0;
for (int i = 10; i >= 0; i--) {

a += 42 / i;
}

Path:

(a, b, c, d, e, g, d, e, g, d, e, g, d, . . . , e, g, d, f )

◦

a := 0

a

i := 10

b

i >= 0

c

a += 42 / i

d

i--
e

error!
f

◦

g

h
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Clang Tidy vs. ChatGPT
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Clang Static Analyzer

$ cat a.cpp
int main() {

int a = 0;
for (int i = 10; i >= 0; i--) {

a += 42 / i;
}
return a;

}
$ clang-tidy a.cpp --
$ clang --analyze -Xclang -analyzer-constraints=z3 \

-Xclang -analyzer-max-loop -Xclang 5 a.cpp
$ clang --analyze -Xclang -analyzer-constraints=z3 \

-Xclang -analyzer-max-loop -Xclang 15 a.cpp
a.cpp:4:13: warning: Division by zero [core.DivideZero]

a += 42 / i;
~~~^~~

1 warning generated.
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Chapter #3:

Test Case Generation
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Symbolic Input

#include <climits>
#include "stdlib.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x = atoi(argv[1]);
return f(x);

}

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x;
klee_make_symbolic(&x, sizeof(x), "x");
return f(x);

}
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Compile to LLVM Bitcode

$ clang -I /opt/homebrew/Cellar/klee/2.3\_4/include -c -g \
-emit-llvm -O0 -Xclang -disable-O0-optnone a.cpp

$ klee a.bc
KLEE: output directory is "/code/tmp/cpp/klee-out-2"
KLEE: Using STP solver backend
KLEE: done: total instructions = 38
KLEE: done: completed paths = 2
KLEE: done: partially completed paths = 0
KLEE: done: generated tests = 2

$ ls -al klee-out-0/*.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000001.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000002.ktest

$ llvm-bcanalyzer --dump a.bc
...
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Test Cases

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x;
klee_make_symbolic(&x, sizeof(x), "x");
return f(x);

}

$ ktest-tool klee-last/test000001.ktest
ktest file : ’klee-last/test000001.ktest’
args : [’a.bc’]
num objects: 1
object 0: name: ’x’
object 0: size: 4
object 0: data: b’\x02\x00\x00\x00’
object 0: hex : 0x02000000
object 0: int : 2
object 0: uint: 2
object 0: text: ....

$ ktest-tool klee-last/test000002.ktest
ktest file : ’klee-last/test000002.ktest’
args : [’a.bc’]
num objects: 1
object 0: name: ’x’
object 0: size: 4
object 0: data: b’\x00\x00\x00\x00’
object 0: hex : 0x00000000
object 0: int : 0
object 0: uint: 0
object 0: text: ....
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Replaying Test Cases

$ export LD_LIBRARY_PATH=/opt/homebrew/Cellar/klee/2.3_4/lib:$LD_LIBRARY_PATH

$ clang -I /opt/homebrew/Cellar/klee/2.3_4/include -L/opt/homebrew/Cellar/klee/2.3_4/lib \
-lkleeRuntest -Xclang -disable-O0-optnone a.cpp

$ KTEST_FILE=klee-last/test000001.ktest ./a.out ; echo $?
255

$ KTEST_FILE=klee-last/test000002.ktest ./a.out ; echo $?
246
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Chapter #4:

Concolic Testing
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Motivating Example

enum user { Viki, Peter, Jeff, Sarah };

int salary_of(user u) { ... }

void raise(user u, int limit) {
int s = salary_of(u);
if (s < limit)

update(u, limit);
}

// Viki 120
// Peter 180
// Jeff 50
// Sarah 70

◦

s := salary_of(u)

s < limit

update()

S 7→ salary_of(U)

S < L

◦
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How to find test values of u and limit for raise()? It’s impossible :(
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Two Steps

1. Concrete (w/random input):

◦

s := salary_of(u)

u 7→ Viki, limit 7→ 0

s < limit

u 7→ Viki, limit 7→ 0, s 7→ 120

update()

◦

ff

2. Symbolic (w/neglected condition):

◦

s := salary_of(u)

u 7→ Viki, limit 7→ L

s < limit

u 7→ Viki, limit 7→ L, s 7→ 120

update()

S 7→ 120
S < L

◦
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Chapter #5:

Further Reading/Watching
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Check this GitHub repo: ksluckow/awesome-symbolic-execution
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