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Symbolic Execution

Control Flow Graph

int f(int x) {
int a = x * 2;
a =a - 4;
if (a == 0)
error ("Div by zero!");
return 42 / a;
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[ CFG Feasibility Infeasible Symbols PC Solver ]

Path Feasibility

A path is feasible if there exists an input Z to the program that covers the
path; i.e., when program is executed with Z as input, the path is taken.

int f(int x) A 0
int a = x *x 2; '
a = a - 4: a = X *x 2
if (a == 0) l
error ("Div by zero!"); a =a-4
return 42 / a; '
b a ==
( error
42 / a
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[ CFG Feasibility Infeasible Symbols PC Solver ]

Infeasible Path

A path is infeasible if there exists no input Z that covers the path.

int f(int x) A O
int a = X ¥ X; 'a
if (a < 0) a = X ¥ X
error ("Too smalll"); 'b
return 42 / a;
1 a <0
AN
d
error
42 / a
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Symbolic Execution

int f(int x) A
int a = x * 2;
a =a - 4;
if (a == 0)
error ("Div by zero!");
return 42 / a;

}
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[ CFG Feasibility Infeasible Symbols PC Solver ]

Path Conditions

Path condition is a condition on the input symbols such that if a path is
feasible its path-condition is satisfiable.

int f(int x) { o

int a = x * 2, )z X

a = a - 4; a = X * 2

if (a == (,)) tt'x+—>X,a»—>2X

error ("Div by zero!"); a =a-4

return 42 / a; tt'xHX,aHQX—ZL

s a ==
/ 2X —4=0 N\ 2+~ X,a2X —4
42 / a

error
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[ CFG Feasibility Infeasible Symbols PC Solver ]

Constraint Solver

A constraint solver is a tool that finds satisfying assignments for a
constraint, if it is satisfiable.

A solution of the constraint is a set of assignments, one for each free
variable that makes the constraint satisfiable.

Constraint:

r— X, ar—2X —4
2X —4=0

Solution:
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[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

SAT Solvers

SAT solver is a computer program which aims to solve the Boolean
satisfiability problem: whether the variables of a given Boolean formula
can be consistently replaced by the values TRUE or FALSE in such a way

that the formula evaluates to TRUE.

Examples:

aNb— ...
aNbN\—-a— ...
aVbV-a—...
a(ffVtt) — ...

All expressions are in Boolean logic.
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[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

SMT Solvers

SMT solver is a computer program which aims to solve the satisfiability
modulo theories: determine whether a mathematical formula is satisfiable.

Examples:

a<oNa>3—...
a<bA fla)>42— ...
a<dVa>10V-a— ...
aNffANT=T7T— ...

SMT solvers: Z3, cvc5, Yices, and many more...

Symbolic Execution Qyegor256



In Theory In Practice Test Case Generation Concolic Testing Literature 15/31

[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

Symbolic Execution

Unsolvable Constraints

Symbolic execution cannot handle unsolvable or almost unsolvable
constraints.

void enter(String p) { Path constraint:
int h = sha256(p);
if ('h.endsWith("68f728")) {
error ("Access denied!");

b p— P
// You are welcome! H +— sha256(P)
} endsWith(H) = tt
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[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

Path Explosion

Path explosion refers to the fact that the number of control-flow paths in a
program grows exponentially with an increase in program size and can
even be infinite in the case of programs with unbounded loop iterations.

int a = 0; 2
for (int 1 = 10; 1 >= 0; i--) { e
a += 42 / i; a7 0
¥ Ib
1 := 10
Path: lc
i>=0
(a7b7C7d767g7d7€7g7d767g7d7'"767g7d7f> h \d
g a += 42 / i ——i—* error!

Symbolic Execution Qyegor256



In Theory In Practice Test Case Generation Concolic Testing Literature 17/31

[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

Symbolic Execution Qyegor256



In Theory

In Practice

[ SAT SMT Unsolvable Explosion ChatGPT CSA ]

Clangy vs. ChatGPT

Symbolic Execution

/code/tmp/cpp$ cat a.cpp
int f() {

int a = 0;

for (int 1 = 3; 1 >= 0; i--) {

a += 42 [ 1i;

}

return a;
}/code/tmp/cpp$ clang-tidy a.cpp —-
1 warning generated.
/code/tmp/cpp/a.cpp:4:13: warning: Division by zero [cla
ng-analyzer-core.DivideZero]

~movmwAon

/code/tmp/cpp/a.cpp:3:3:
Entering loop body

for (int i = 3; i >= 0;

A
/code/tmp/cpp/a.cpp:3:3:
Entering loop body
/code/tmp/cpp/a.cpp:3:3:
Entering loop body
/code/tmp/cpp/a.cpp:3:27:
to 'i!'

for (int 1 = 3; 1 >= 0;

condition is true.

condition is true.
condition is true.

value © is assigned

/code/tmp/cpp/a.cpp:3:3: condition is true.
Entering loop body
for (int 1 = 3; 1 >= 0;
A
/code/tmp/cpp/a.cpp:4:13:
a += 42 [ 1i;

~mvmwAnn

Division by zero
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Do you see any problems with this C++ code:

inta=0;

for (inti=10;i>=0;i-){
a+=42]/i;

}

There is a problem with this code.

The loop conditionis “i >= @, which means the loop will run 11 times (i.e., for “1" values
of 10,9, 8, ..., 0). When “1i" reaches 0, the expression *42 / i’ will cause a division by

zero error, which is undefined behavior in C++.

To fix this issue, you can change the loop conditionto “i > @ instead of i >= @". This

will ensure that the loop runs only 10 times, for 1" values of 10, 9, 8§, ..., 1.

Here's the corrected code:

css ) Copy code

int a = 0;
for (int i = HIR
a += / i;

}

This code will execute without any issues and will correctly calculate the sum of the

expression 42 / i® for *i values 0f 10, 9, 8, ..., 1.
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Clang Static Analyzer

Symbolic Execution

$

cat a.cpp

int main() {

&+

int a = 0;

for (int i = 10; i >= 0; i--) {
a += 42 / 1i;

ks

return a;

clang-tidy a.cpp --

clang --analyze -Xclang -analyzer-constraints=z3 \
-Xclang -analyzer-max-loop -Xclang 5 a.cpp

clang --analyze -Xclang -analyzer-constraints=z3 \
-Xclang -analyzer-max-loop -Xclang 15 a.cpp

.cpp:4:13: warning: Division by zero [core.DivideZero]

a += 42 / i;

~ e~~~

warning generated.
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Symbolic Input

#include <climits>
#include "stdlib.h"
int f(int x) {

int a = x *x 2;

a=a - 4;
if (a == 0)
exit(-1);

return 42 / a;

}

int main(int argc, charx* argv) {
int x = atoi(argvl[1l]);

return f(x)

}

Symbolic Execution

b

Test Case Generation Concolic Testing Literature

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x *x 2;

a=a - 4;

if (a == 0)

exit(-1);
return 42 / a;

}

int main(int argc, charx*x argv) {

int x;

klee_make_symbolic(&x, sizeof(x), "x");

return f(x);
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Symbolic Execution

Compile to LLVM Bitcode

$ clang -I /opt/homebrew/Cellar/klee/2.3\_4/include -c -g \
-emit-1lvm -00 -Xclang -disable-00-optnone a.cpp

$ klee a.bc

KLEE: output directory is "/code/tmp/cpp/klee-out-2"
KLEE: Using STP solver backend

KLEE: done: total instructions = 38

KLEE: done: completed paths = 2

KLEE: done: partially completed paths = 0

KLEE: done: generated tests = 2

$ 1s -al klee-out-0/*.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000001.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000002.ktest

$ llvm-bcanalyzer --dump a.bc
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#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {
int a = x *x 2;
a=a-4;
if (a == 0)
exit(-1);
return 42 / a;
}
int main(int argc, char**x argv) {
int x;

klee_make_symbolic(&x, sizeof(x), "x");

return f(x);

b

Symbolic Execution

$ ktest-tool klee-last/test000001.ktest

ktest file : ’klee-last/test000001.ktest’
args [’a.bc’]

num objects: 1

object 0: name: ’x’

object 0: size: 4

object 0: data: b’\x02\x00\x00\x00’
object 0: hex : 0x02000000

object 0: int : 2

object 0: uint: 2

object 0: text:

Test Case Generation Concolic Testing Literature
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$ ktest-tool klee-last/test000002.ktest

ktest file : ’klee-last/test000002.ktest’
args [’a.bc’]

num objects: 1

object 0: name: ’x’

object 0: size: 4

object 0: data: b’\x00\x00\x00\x00’
object 0: hex : 0x00000000

object 0: int : O

object 0: uint: O

object 0: text:
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[ Input Bitcode TCs Replay |

Replaying Test Cases

$ export LD_LIBRARY_PATH=/opt/homebrew/Cellar/klee/2.3_4/1ib:$LD_LIBRARY_PATH

$ clang -I /opt/homebrew/Cellar/klee/2.3_4/include -L/opt/homebrew/Cellar/klee/2.3_4/1ib \
-lkleeRuntest -Xclang -disable-00-optnone a.cpp

$ KTEST_FILE=klee-last/test000001.ktest ./a.out ; echo $?
255

$ KTEST_FILE=klee-last/test000002.ktest ./a.out ; echo $7
246
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Concolic Testing
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Motivating Example

[ Example Steps ]

enum user { Viki, Peter, Jeff, Sarah }; O
int salary_of(user w) { ... } l
void raise(user u, int limit) { = o= SalarY—Of (U)

int s = salary_of(u); l
if (s < limit)

, update(u, limit); o
S + salary_of(U)
// Viki 120
// Peter 180 S <L
// Jeff 50
// Sarah 70 update()

7
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[ Example Steps ]

How to find test values of uand 1imit for raise()? It’s impossible :(
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[ Example Steps ]

1. Concrete (w/random input):

O

| u— Viki, limit — 0

S =

salary_of (u)

| u— Viki, limit — 0,5 — 120

s < limit

N

ff

Test Case Generation Concolic Testing Literature

2. Symbolic (w/neglected condition):

O

| u—s Viki, limit — L

S

salary_of (u)

update ()

7

Symbolic Execution
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| u Viki, limit — L, s+ 120

s < limit

S — 120

update ()

7
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[ Example Steps ]
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Further Reading/Watching
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Check this GitHub repo: ksluckow/awesome-symbolic-execution
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