
Symbolic Execution

Yegor Bugayenko

Lecture #8 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=PaCEIGcnx80

2/31

Symbolic Execution @yegor256

In Theory

In Practice

Test Case Generation

Concolic Testing

Further Reading/Watching

In Theory In Practice Test Case Generation Concolic Testing Literature 3/31

Symbolic Execution @yegor256

Chapter #1:

In Theory

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

4/31

Symbolic Execution @yegor256

Control Flow Graph

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

a := a - 4

a == 0

error

42 / a

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

5/31

Symbolic Execution @yegor256

Path Feasibility

A path is feasible if there exists an input I to the program that covers the

path; i.e., when program is executed with I as input, the path is taken.

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

a := a - 4

a == 0

error

42 / a

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

6/31

Symbolic Execution @yegor256

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

7/31

Symbolic Execution @yegor256

Infeasible Path

A path is infeasible if there exists no input I that covers the path.

int f(int x) {
int a = x * x;
if (a < 0)

error("Too small!");
return 42 / a;

}

◦

a := x * x

a

a < 0

b

error

c

42 / a

d

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

8/31

Symbolic Execution @yegor256

Symbols

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

x 7→ X

a := a - 4

x 7→ X, a 7→ 2X

a == 0

x 7→ X, a 7→ 2X − 4

error

x 7→ X, a 7→ 2X − 4

42 / a

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

9/31

Symbolic Execution @yegor256

Path Conditions

Path condition is a condition on the input symbols such that if a path is

feasible its path-condition is satisfiable.

int f(int x) {
int a = x * 2;
a = a - 4;
if (a == 0)

error("Div by zero!");
return 42 / a;

}

◦

a := x * 2

x 7→ Xtt

a := a - 4

x 7→ X, a 7→ 2Xtt

a == 0

x 7→ X, a 7→ 2X − 4tt

error

x 7→ X, a 7→ 2X − 42X − 4 = 0

42 / a

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

10/31

Symbolic Execution @yegor256

In Theory In Practice Test Case Generation Concolic Testing Literature

[CFG Feasibility Infeasible Symbols PC Solver]

11/31

Symbolic Execution @yegor256

Constraint Solver

A constraint solver is a tool that finds satisfying assignments for a

constraint, if it is satisfiable.

A solution of the constraint is a set of assignments, one for each free

variable that makes the constraint satisfiable.

Constraint:

x 7→ X, a 7→ 2X − 4

2X − 4 = 0

Solution:

X = 2

In Theory In Practice Test Case Generation Concolic Testing Literature 12/31

Symbolic Execution @yegor256

Chapter #2:

In Practice

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

13/31

Symbolic Execution @yegor256

SAT Solvers

SAT solver is a computer program which aims to solve the Boolean
satisfiability problem: whether the variables of a given Boolean formula

can be consistently replaced by the values TRUE or FALSE in such a way

that the formula evaluates to TRUE.

Examples:

a ∧ b → . . .

a ∧ b ∧ ¬a → . . .

a ∨ b ∨ ¬a → . . .

a ∧ (ff ∨ tt) → . . .

All expressions are in Boolean logic.

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

14/31

Symbolic Execution @yegor256

SMT Solvers

SMT solver is a computer program which aims to solve the satisfiability
modulo theories: determine whether a mathematical formula is satisfiable.

Examples:

a < 5 ∧ a > 3 → . . .

a < 5 ∧ f (a) > 42 → . . .

a < 5 ∨ a > 10 ∨ ¬a → . . .

a ∧ ff ∧ x = 7 → . . .

SMT solvers: Z3, cvc5, Yices, and many more...

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

15/31

Symbolic Execution @yegor256

Unsolvable Constraints

Symbolic execution cannot handle unsolvable or almost unsolvable

constraints.

void enter(String p) {
int h = sha256(p);
if (!h.endsWith("68f728")) {

error("Access denied!");
}
// You are welcome!

}

Path constraint:

p 7→ P

H 7→ sha256(P)

endsWith(H) = tt

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

16/31

Symbolic Execution @yegor256

Path Explosion

Path explosion refers to the fact that the number of control-flow paths in a

program grows exponentially with an increase in program size and can

even be infinite in the case of programs with unbounded loop iterations.

int a = 0;
for (int i = 10; i >= 0; i--) {

a += 42 / i;
}

Path:

(a, b, c, d, e, g, d, e, g, d, e, g, d, . . . , e, g, d, f)

◦

a := 0

a

i := 10

b

i >= 0

c

a += 42 / i

d

i--
e

error!
f

◦

g

h

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

17/31

Symbolic Execution @yegor256

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

18/31

Symbolic Execution @yegor256

Clang Tidy vs. ChatGPT

In Theory In Practice Test Case Generation Concolic Testing Literature

[SAT SMT Unsolvable Explosion ChatGPT CSA]

19/31

Symbolic Execution @yegor256

Clang Static Analyzer

$ cat a.cpp
int main() {

int a = 0;
for (int i = 10; i >= 0; i--) {

a += 42 / i;
}
return a;

}
$ clang-tidy a.cpp --
$ clang --analyze -Xclang -analyzer-constraints=z3 \

-Xclang -analyzer-max-loop -Xclang 5 a.cpp
$ clang --analyze -Xclang -analyzer-constraints=z3 \

-Xclang -analyzer-max-loop -Xclang 15 a.cpp
a.cpp:4:13: warning: Division by zero [core.DivideZero]

a += 42 / i;
~~~^~~

1 warning generated.



In Theory In Practice Test Case Generation Concolic Testing Literature 20/31

Symbolic Execution @yegor256

Chapter #3:

Test Case Generation



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Input Bitcode TCs Replay ]

21/31

Symbolic Execution @yegor256

Symbolic Input

#include <climits>
#include "stdlib.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x = atoi(argv[1]);
return f(x);

}

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x;
klee_make_symbolic(&x, sizeof(x), "x");
return f(x);

}



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Input Bitcode TCs Replay ]

22/31

Symbolic Execution @yegor256

Compile to LLVM Bitcode

$ clang -I /opt/homebrew/Cellar/klee/2.3\_4/include -c -g \
-emit-llvm -O0 -Xclang -disable-O0-optnone a.cpp

$ klee a.bc
KLEE: output directory is "/code/tmp/cpp/klee-out-2"
KLEE: Using STP solver backend
KLEE: done: total instructions = 38
KLEE: done: completed paths = 2
KLEE: done: partially completed paths = 0
KLEE: done: generated tests = 2

$ ls -al klee-out-0/*.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000001.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000002.ktest

$ llvm-bcanalyzer --dump a.bc
...



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Input Bitcode TCs Replay ]

23/31

Symbolic Execution @yegor256

Test Cases

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x * 2;
a = a - 4;
if (a == 0)

exit(-1);
return 42 / a;

}
int main(int argc, char** argv) {

int x;
klee_make_symbolic(&x, sizeof(x), "x");
return f(x);

}

$ ktest-tool klee-last/test000001.ktest
ktest file : ’klee-last/test000001.ktest’
args : [’a.bc’]
num objects: 1
object 0: name: ’x’
object 0: size: 4
object 0: data: b’\x02\x00\x00\x00’
object 0: hex : 0x02000000
object 0: int : 2
object 0: uint: 2
object 0: text: ....

$ ktest-tool klee-last/test000002.ktest
ktest file : ’klee-last/test000002.ktest’
args : [’a.bc’]
num objects: 1
object 0: name: ’x’
object 0: size: 4
object 0: data: b’\x00\x00\x00\x00’
object 0: hex : 0x00000000
object 0: int : 0
object 0: uint: 0
object 0: text: ....



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Input Bitcode TCs Replay ]

24/31

Symbolic Execution @yegor256

Replaying Test Cases

$ export LD_LIBRARY_PATH=/opt/homebrew/Cellar/klee/2.3_4/lib:$LD_LIBRARY_PATH

$ clang -I /opt/homebrew/Cellar/klee/2.3_4/include -L/opt/homebrew/Cellar/klee/2.3_4/lib \
-lkleeRuntest -Xclang -disable-O0-optnone a.cpp

$ KTEST_FILE=klee-last/test000001.ktest ./a.out ; echo $?
255

$ KTEST_FILE=klee-last/test000002.ktest ./a.out ; echo $?
246



In Theory In Practice Test Case Generation Concolic Testing Literature 25/31

Symbolic Execution @yegor256

Chapter #4:

Concolic Testing



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Example Steps ]

26/31

Symbolic Execution @yegor256

Motivating Example

enum user { Viki, Peter, Jeff, Sarah };

int salary_of(user u) { ... }

void raise(user u, int limit) {
int s = salary_of(u);
if (s < limit)

update(u, limit);
}

// Viki 120
// Peter 180
// Jeff 50
// Sarah 70

◦

s := salary_of(u)

s < limit

update()

S 7→ salary_of(U)

S < L

◦



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Example Steps ]

27/31

Symbolic Execution @yegor256

How to find test values of u and limit for raise()? It’s impossible :(



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Example Steps ]

28/31

Symbolic Execution @yegor256

Two Steps

1. Concrete (w/random input):

◦

s := salary_of(u)

u 7→ Viki, limit 7→ 0

s < limit

u 7→ Viki, limit 7→ 0, s 7→ 120

update()

◦

ff

2. Symbolic (w/neglected condition):

◦

s := salary_of(u)

u 7→ Viki, limit 7→ L

s < limit

u 7→ Viki, limit 7→ L, s 7→ 120

update()

S 7→ 120
S < L

◦



In Theory In Practice Test Case Generation Concolic Testing Literature

[ Example Steps ]

29/31

Symbolic Execution @yegor256



In Theory In Practice Test Case Generation Concolic Testing Literature 30/31

Symbolic Execution @yegor256

Chapter #5:

Further Reading/Watching



In Theory In Practice Test Case Generation Concolic Testing Literature 31/31

Symbolic Execution @yegor256

Check this GitHub repo: ksluckow/awesome-symbolic-execution

References

https://github.com/ksluckow/awesome-symbolic-execution

