Symbolic Execution

YEGOR BUGAYENKO

Lecture #8 out of 10
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=PaCEIGcnx80

Symbolic Execution

In Theory

In Practice

Test Case Generation
Concolic Testing

Further Reading/Watching

2/31

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 3/31

Chapter #1:

Symbolic Execution Qyegor256

In Theory In Practice

[CFG Feasibility Infeasible Symbols PC Solver |

Symbolic Execution

Control Flow Graph

int f(int x) {
int a = x * 2;
a =a - 4;
if (a == 0)
error ("Div by zero!");
return 42 / a;

¥

O
|

= X *x 2
|

=a -4

a::

42 / a

Test Case Generation Concolic Testing Literature

error

4/31

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 5/31

[CFG Feasibility Infeasible Symbols PC Solver]

Path Feasibility

A path is feasible if there exists an input Z to the program that covers the
path; i.e., when program is executed with Z as input, the path is taken.

int f(int x) A 0
int a = x *x 2; '
a = a - 4: a = X *x 2
if (a == 0) l
error ("Div by zero!"); a =a-4
return 42 / a; '
b a ==
(error
42 / a

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 6/31

[CFG Feasibility Infeasible Symbols PC Solver]

Symbolic Execution Qyegor256

In Theory In Practice

Test Case Generation Concolic Testing Literature

/31

[CFG Feasibility Infeasible Symbols PC Solver]

Infeasible Path

A path is infeasible if there exists no input Z that covers the path.

int f(int x) A O
int a = X ¥ X; 'a
if (a < 0) a = X ¥ X
error ("Too smalll"); 'b
return 42 / a;
1 a <0
AN
d
error
42 / a

Symbolic Execution Qyegor256

In Theory

In Practice

[CFG Feasibility Infeasible Symbols PC Solver]

Symbolic Execution

int f(int x) A
int a = x * 2;
a =a - 4;
if (a == 0)
error ("Div by zero!");
return 42 / a;

}

Test Case Generation Concolic Testing Literature

0
'17F+)(
a = X % 2
'x+—>)(¢1F+ZLX
a = a -4
'a:&%;X;ar—>2)(——4
5 ==
~\\\\\:EF+4X}a+—>2)(——4
error
42 / a

8/31

Qyegor256

In Theory In Practice

Test Case Generation Concolic Testing Literature 9/31

[CFG Feasibility Infeasible Symbols PC Solver]

Path Conditions

Path condition is a condition on the input symbols such that if a path is
feasible its path-condition is satisfiable.

int f(int x) { o

int a = x * 2,)z X

a = a - 4; a = X * 2

if (a == (,)) tt'x+—>X,a»—>2X

error ("Div by zero!"); a =a-4

return 42 / a; tt'xHX,aHQX—ZL

s a ==
/ 2X —4=0 N\ 2+~ X,a2X —4
42 / a

error

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 10/31

[CFG Feasibility Infeasible Symbols PC Solver]

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 11/31

[CFG Feasibility Infeasible Symbols PC Solver]

Constraint Solver

A constraint solver is a tool that finds satisfying assignments for a
constraint, if it is satisfiable.

A solution of the constraint is a set of assignments, one for each free
variable that makes the constraint satisfiable.

Constraint:

r— X, ar—2X —4
2X —4=0

Solution:

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 12/31

Chapter #2:

In Practice

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 13/31

[SAT SMT Unsolvable Explosion ChatGPT CSA]

SAT Solvers

SAT solver is a computer program which aims to solve the Boolean
satisfiability problem: whether the variables of a given Boolean formula
can be consistently replaced by the values TRUE or FALSE in such a way

that the formula evaluates to TRUE.

Examples:

aNb— ...
aNbN\—-a— ...
aVbV-a—...
a(ffVtt) — ...

All expressions are in Boolean logic.

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 14/31

[SAT SMT Unsolvable Explosion ChatGPT CSA]

SMT Solvers

SMT solver is a computer program which aims to solve the satisfiability
modulo theories: determine whether a mathematical formula is satisfiable.

Examples:

a<oNa>3—...
a<bA fla)>42— ...
a<dVa>10V-a— ...
aNffANT=T7T— ...

SMT solvers: Z3, cvc5, Yices, and many more...

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 15/31

[SAT SMT Unsolvable Explosion ChatGPT CSA]

Symbolic Execution

Unsolvable Constraints

Symbolic execution cannot handle unsolvable or almost unsolvable
constraints.

void enter(String p) { Path constraint:
int h = sha256(p);
if ('h.endsWith("68f728")) {
error ("Access denied!");

b p— P
// You are welcome! H +— sha256(P)
} endsWith(H) = tt

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 16/31

[SAT SMT Unsolvable Explosion ChatGPT CSA]

Path Explosion

Path explosion refers to the fact that the number of control-flow paths in a
program grows exponentially with an increase in program size and can
even be infinite in the case of programs with unbounded loop iterations.

int a = 0; 2
for (int 1 = 10; 1 >= 0; i--) { e
a += 42 / i; a7 0
¥ Ib
1 := 10
Path: lc
i>=0
(a7b7C7d767g7d7€7g7d767g7d7'"767g7d7f> h \d
g a += 42 / i ——i—* error!

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 17/31

[SAT SMT Unsolvable Explosion ChatGPT CSA]

Symbolic Execution Qyegor256

In Theory

In Practice

[SAT SMT Unsolvable Explosion ChatGPT CSA]

Clangy vs. ChatGPT

Symbolic Execution

/code/tmp/cpp$ cat a.cpp
int f() {

int a = 0;

for (int 1 = 3; 1 >= 0; i--) {

a += 42 [1i;

}

return a;
}/code/tmp/cpp$ clang-tidy a.cpp —-
1 warning generated.
/code/tmp/cpp/a.cpp:4:13: warning: Division by zero [cla
ng-analyzer-core.DivideZero]

~movmwAon

/code/tmp/cpp/a.cpp:3:3:
Entering loop body

for (int i = 3; i >= 0;

A
/code/tmp/cpp/a.cpp:3:3:
Entering loop body
/code/tmp/cpp/a.cpp:3:3:
Entering loop body
/code/tmp/cpp/a.cpp:3:27:
to 'i!'

for (int 1 = 3; 1 >= 0;

condition is true.

condition is true.
condition is true.

value © is assigned

/code/tmp/cpp/a.cpp:3:3: condition is true.
Entering loop body
for (int 1 = 3; 1 >= 0;
A
/code/tmp/cpp/a.cpp:4:13:
a += 42 [1i;

~mvmwAnn

Division by zero

Test Case Generation Concolic Testing Literature

Do you see any problems with this C++ code:

inta=0;

for (inti=10;i>=0;i-){
a+=42]/i;

}

There is a problem with this code.

The loop conditionis “i >= @, which means the loop will run 11 times (i.e., for “1" values
of 10,9, 8, ..., 0). When “1i" reaches 0, the expression *42 / i’ will cause a division by

zero error, which is undefined behavior in C++.

To fix this issue, you can change the loop conditionto “i > @ instead of i >= @". This

will ensure that the loop runs only 10 times, for 1" values of 10, 9, 8§, ..., 1.

Here's the corrected code:

css) Copy code

int a = 0;
for (int i = HIR
a += / i;

}

This code will execute without any issues and will correctly calculate the sum of the

expression 42 / i® for *i values 0f 10, 9, 8, ..., 1.

18/31

Qyegor256

In Theory In Practice

[SAT SMT Unsolvable Explosion ChatGPT CSA]

Clang Static Analyzer

Symbolic Execution

$

cat a.cpp

int main() {

&+

int a = 0;

for (int i = 10; i >= 0; i--) {
a += 42 / 1i;

ks

return a;

clang-tidy a.cpp --

clang --analyze -Xclang -analyzer-constraints=z3 \
-Xclang -analyzer-max-loop -Xclang 5 a.cpp

clang --analyze -Xclang -analyzer-constraints=z3 \
-Xclang -analyzer-max-loop -Xclang 15 a.cpp

.cpp:4:13: warning: Division by zero [core.DivideZero]

a += 42 / i;

~ e~~~

warning generated.

Test Case Generation Concolic Testing Literature

19/31

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 20/31

Chapter #3:
Test Case Generation

Symbolic Execution Qyegor256

In Theory In Practice

[Input Bitcode TCs Replay |

Symbolic Input

#include <climits>
#include "stdlib.h"
int f(int x) {

int a = x *x 2;

a=a - 4;
if (a == 0)
exit(-1);

return 42 / a;

}

int main(int argc, charx* argv) {
int x = atoi(argvl[1l]);

return f(x)

}

Symbolic Execution

b

Test Case Generation Concolic Testing Literature

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {

int a = x *x 2;

a=a - 4;

if (a == 0)

exit(-1);
return 42 / a;

}

int main(int argc, charx*x argv) {

int x;

klee_make_symbolic(&x, sizeof(x), "x");

return f(x);

21/31

Qyegor256

In Theory In Practice

[Input Bitcode TCs Replay |

Symbolic Execution

Compile to LLVM Bitcode

$ clang -I /opt/homebrew/Cellar/klee/2.3_4/include -c -g \
-emit-1lvm -00 -Xclang -disable-00-optnone a.cpp

$ klee a.bc

KLEE: output directory is "/code/tmp/cpp/klee-out-2"
KLEE: Using STP solver backend

KLEE: done: total instructions = 38

KLEE: done: completed paths = 2

KLEE: done: partially completed paths = 0

KLEE: done: generated tests = 2

$ 1s -al klee-out-0/*.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000001.ktest
-rw-r--r-- 1 yb staff 46 Apr 7 17:30 test000002.ktest

$ llvm-bcanalyzer --dump a.bc

Test Case Generation Concolic Testing Literature

22/31

Qyegor256

In Theory In Practice

[Input Bitcode TCs Replay]

#include <climits>
#include "stdlib.h"
#include "klee/klee.h"
int f(int x) {
int a = x *x 2;
a=a-4;
if (a == 0)
exit(-1);
return 42 / a;
}
int main(int argc, char**x argv) {
int x;

klee_make_symbolic(&x, sizeof(x), "x");

return f(x);

b

Symbolic Execution

$ ktest-tool klee-last/test000001.ktest

ktest file : ’klee-last/test000001.ktest’
args [’a.bc’]

num objects: 1

object 0: name: ’x’

object 0: size: 4

object 0: data: b’\x02\x00\x00\x00’
object 0: hex : 0x02000000

object 0: int : 2

object 0: uint: 2

object 0: text:

Test Case Generation Concolic Testing Literature

23/31

$ ktest-tool klee-last/test000002.ktest

ktest file : ’klee-last/test000002.ktest’
args [’a.bc’]

num objects: 1

object 0: name: ’x’

object 0: size: 4

object 0: data: b’\x00\x00\x00\x00’
object 0: hex : 0x00000000

object 0: int : O

object 0: uint: O

object 0: text:

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 24/31

[Input Bitcode TCs Replay |

Replaying Test Cases

$ export LD_LIBRARY_PATH=/opt/homebrew/Cellar/klee/2.3_4/1ib:$LD_LIBRARY_PATH

$ clang -I /opt/homebrew/Cellar/klee/2.3_4/include -L/opt/homebrew/Cellar/klee/2.3_4/1ib \
-lkleeRuntest -Xclang -disable-00-optnone a.cpp

$ KTEST_FILE=klee-last/test000001.ktest ./a.out ; echo $?
255

$ KTEST_FILE=klee-last/test000002.ktest ./a.out ; echo $7
246

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 25/31

Chapter #4:

Concolic Testing

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 26/31

Motivating Example

[Example Steps]

enum user { Viki, Peter, Jeff, Sarah }; O
int salary_of(user w) { ... } l
void raise(user u, int limit) { = o= SalarY—Of (U)

int s = salary_of(u); l
if (s < limit)

, update(u, limit); o
S + salary_of(U)
// Viki 120
// Peter 180 S <L
// Jeff 50
// Sarah 70 update()

7

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 27/31

[Example Steps]

How to find test values of uand 1imit for raise()? It’s impossible :(

Symbolic Execution Qyegor256

In Theory In Practice

[Example Steps]

1. Concrete (w/random input):

O

| u— Viki, limit — 0

S =

salary_of (u)

| u— Viki, limit — 0,5 — 120

s < limit

N

ff

Test Case Generation Concolic Testing Literature

2. Symbolic (w/neglected condition):

O

| u—s Viki, limit — L

S

salary_of (u)

update ()

7

Symbolic Execution

28/31

| u Viki, limit — L, s+ 120

s < limit

S — 120

update ()

7

Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 29/31

[Example Steps]

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 30/31

Chapter #5:

Further Reading/Watching

Symbolic Execution Qyegor256

In Theory In Practice Test Case Generation Concolic Testing Literature 31/31

Check this GitHub repo: ksluckow/awesome-symbolic-execution

References

Symbolic Execution Qyegor256

https://github.com/ksluckow/awesome-symbolic-execution

