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Chapter #1:

Motivating Example
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Unassigned Variable

Which code snippet has an error (“use of unassigned variable”)?

int f(int x) {
int a;
if (x > 10)

a = 42;
while (x++ < 5)

a = x;
return a + 1;

}

int f(int x) {
int a;
if (x > 3)

a = 42;
while (x++ < 12)

a = x;
return a + 1;

}
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ChatGPT vs. Clang Tidy
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UndefinedBehaviorSanitizer

Clang UndefinedBehaviorSanitizer (the dynamic analyzer) can detect the

issue in runtime:

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
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IntelliJ IDE

IntelliJ IDEA doesn’t see the difference:
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Java Compiler

javac doesn’t see the difference either:
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Chapter #2:

Method
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Control Flow Graph

First, we represent the program as a Control Flow Graph (CFG):

int f(int x) {
int a;
if (x > 10)

a = 42;
while (x++ < 5)

a = x;
return a + 1;

}

◦

x > 10

a = 42

x++ < 5

a = x

a + 1
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Six Properties of Data Flow Analysis

Data flow analysis propagates information (data) along the control flow
graph, with the following six properties in mind:

1. Domain (of data flow facts)

2. Direction (forward or backward)

3. Transfer Function (sometimes with GEN and KILL sets)

4. Confluence Operator ("meet" or "join")

5. Boundary Condition (start data for the entry node)

6. Initial Values (start data for each node)
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Over-approximation

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

1. Domain:

variable names

2. Direction:

forward

3. Transfer Function:

add on “:=”

4. Confluence Operator:

meet, intersection

5. Boundary Condition:

{x}
6. Initial Values:

empty sets
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Meet Operator

The meet operator is coming from the lattice that abstracts the data that

flows (remember abstract interpretation?):

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

{x, a}

{x} {a}

{}

{x, a} ⊓ {x} → . . .

{a} ⊓ {} → . . .

{a} ⊓ {x} → . . .
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GEN and KILL Functions

A transfer function may be defined by defining GEN and KILL functions:

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

s GEN(s) KILL(s)

x > 10 {} {}
a := 42 {a} {}
x++ < 5 {} {}
a := x {a} {}
a + 1 {} {}
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Over-approximation = Low Precision

From the perspective of path insensitive data flow analysis, there are bugs

in both CFGs, but it’s wrong:

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

◦

x > 3

a := 42

x++ < 12

a := x

a + 1

{x, a}

{x} {a}

{}
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Chapter #3:

Sensitivities
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Path-Sensitive Analysis

A path-sensitive analysis computes different pieces of analysis information

dependent on the predicates at conditional branch instructions.
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◦

x > 3

a := 42

x++ < 12

a := x

a + 1
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Flow-Sensitive Analysis

A flow-sensitive analysis takes into account the order of statements in a

program.

The analysis we did before was flow sensitive. Flow insensitive analysis
example:

1 a = 0;
2 a = 5;
3 a = a + 1;
4 // What is a possible value of ’a’?
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Context-Sensitive Analysis

A context-sensitive analysis is an interprocedural analysis that considers

the calling context when analyzing the target of a function call.

1 f(5, 6); // call-site #1
2 f(6, 5); // call-site #2
3 void f(x, y) {
4 // Is it possible to have x == y?
5 }
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Most Common Types
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Reaching Definitions Analysis

Reaching definitions is a data-flow analysis which statically determines

which definitions may reach a given point in the code.

1 float price(int book) {
2 float p = load_from_database();
3 if (book < 100)
4 p = 14.99;
5 if (book > 50)
6 p = 9.99;
7 float discount = 0.90;
8 return p * discount;
9 }

Do you see any problems with this code?
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Liveness Analysis

Live variable analysis calculates the variables that are live at each point in

the program (they hold values that may be needed in the future).

1 int price(int book_id) {
2 int p;
3 int discount;
4 if (book_id > 400)
5 discount = 10;
6 p = load_price_from_database(book_id);
7 p = ( p * 95 ) / 100;
8 return p;
9 }

Do you see any problems in the code?
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Definite Assignment Analysis

Definite assignment analysis conservatively ensures that a variable or

location is always assigned before it is used.

1 int salary(int user_id) {
2 int s;
3 if (user_id > 400) {
4 s = get_salary_from_mysql(user_id);
5 } else if (user_id < 400) {
6 s = 0;
7 }
8 return s;
9 }

Is there an error in this code?
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Available Expression Analysis

Available expression analysis determines for each point in the program the

set of expressions that need not be recomputed.

1 int price(int book_id) {
2 int p = 14;
3 if (stock(book_id) < 100) {
4 p = 19;
5 } else if (stock(book_id) > 1000) {
6 p = 9;
7 }
8 return p;
9 }

Shall we computer stock(book_id) twice?
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Constant Propagation Analysis

Constant propagation analysis at every statement tells which variables is a

constant: every execution that reaches that point, gives that variable the

same value.

1 float discount(float price) {
2 float d = 0.8;
3 if (price < 14.99)
4 d = 0.93;
5 else
6 d = d + 0.13;
7 return price * d;
8 }

Is there an error in this code?
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Further Reading/Watching
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