
Data Flow Analysis

Yegor Bugayenko

Lecture #7 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=loAVqyfP374

2/31

Data Flow Analysis @yegor256

Motivating Example

Method

Sensitivities

Most Common Types

Further Reading/Watching

Example Method Sensitivities Types Literature 3/31

Data Flow Analysis @yegor256

Chapter #1:

Motivating Example

Example Method Sensitivities Types Literature 4/31

Data Flow Analysis @yegor256

Unassigned Variable

Which code snippet has an error (“use of unassigned variable”)?

int f(int x) {
int a;
if (x > 10)

a = 42;
while (x++ < 5)

a = x;
return a + 1;

}

int f(int x) {
int a;
if (x > 3)

a = 42;
while (x++ < 12)

a = x;
return a + 1;

}

Example Method Sensitivities Types Literature 5/31

Data Flow Analysis @yegor256

ChatGPT vs. Clang Tidy

Example Method Sensitivities Types Literature 6/31

Data Flow Analysis @yegor256

UndefinedBehaviorSanitizer

Clang UndefinedBehaviorSanitizer (the dynamic analyzer) can detect the

issue in runtime:

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html

Example Method Sensitivities Types Literature 7/31

Data Flow Analysis @yegor256

IntelliJ IDE

IntelliJ IDEA doesn’t see the difference:

Example Method Sensitivities Types Literature 8/31

Data Flow Analysis @yegor256

Java Compiler

javac doesn’t see the difference either:

Example Method Sensitivities Types Literature 9/31

Data Flow Analysis @yegor256

Chapter #2:

Method

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

10/31

Data Flow Analysis @yegor256

Control Flow Graph

First, we represent the program as a Control Flow Graph (CFG):

int f(int x) {
int a;
if (x > 10)

a = 42;
while (x++ < 5)

a = x;
return a + 1;

}

◦

x > 10

a = 42

x++ < 5

a = x

a + 1

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

11/31

Data Flow Analysis @yegor256

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

12/31

Data Flow Analysis @yegor256

Six Properties of Data Flow Analysis

Data flow analysis propagates information (data) along the control flow
graph, with the following six properties in mind:

1. Domain (of data flow facts)

2. Direction (forward or backward)

3. Transfer Function (sometimes with GEN and KILL sets)

4. Confluence Operator ("meet" or "join")

5. Boundary Condition (start data for the entry node)

6. Initial Values (start data for each node)

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

13/31

Data Flow Analysis @yegor256

Over-approximation

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

1. Domain:

variable names

2. Direction:

forward

3. Transfer Function:

add on “:=”

4. Confluence Operator:

meet, intersection

5. Boundary Condition:

{x}
6. Initial Values:

empty sets

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

14/31

Data Flow Analysis @yegor256

Meet Operator

The meet operator is coming from the lattice that abstracts the data that

flows (remember abstract interpretation?):

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

{x, a}

{x} {a}

{}

{x, a} ⊓ {x} → . . .

{a} ⊓ {} → . . .

{a} ⊓ {x} → . . .

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

15/31

Data Flow Analysis @yegor256

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

16/31

Data Flow Analysis @yegor256

GEN and KILL Functions

A transfer function may be defined by defining GEN and KILL functions:

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

s GEN(s) KILL(s)

x > 10 {} {}
a := 42 {a} {}
x++ < 5 {} {}
a := x {a} {}
a + 1 {} {}

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

17/31

Data Flow Analysis @yegor256

Over-approximation = Low Precision

From the perspective of path insensitive data flow analysis, there are bugs

in both CFGs, but it’s wrong:

◦

x > 10

a := 42

x++ < 5

a := x

a + 1

◦

x > 3

a := 42

x++ < 12

a := x

a + 1

{x, a}

{x} {a}

{}

Example Method Sensitivities Types Literature

[CFG Properties Over-approximation Meet GEN/KILL Low]

18/31

Data Flow Analysis @yegor256

Example Method Sensitivities Types Literature 19/31

Data Flow Analysis @yegor256

Chapter #3:

Sensitivities

Example Method Sensitivities Types Literature

[Path-Sensitive Analysis Flow-Sensitive Analysis Context-Sensitive Analysis]

20/31

Data Flow Analysis @yegor256

Path-Sensitive Analysis

A path-sensitive analysis computes different pieces of analysis information

dependent on the predicates at conditional branch instructions.

Example Method Sensitivities Types Literature

[Path-Sensitive Analysis Flow-Sensitive Analysis Context-Sensitive Analysis]

21/31

Data Flow Analysis @yegor256

◦

x > 3

a := 42

x++ < 12

a := x

a + 1

Example Method Sensitivities Types Literature

[Path-Sensitive Analysis Flow-Sensitive Analysis Context-Sensitive Analysis]

22/31

Data Flow Analysis @yegor256

Flow-Sensitive Analysis

A flow-sensitive analysis takes into account the order of statements in a

program.

The analysis we did before was flow sensitive. Flow insensitive analysis
example:

1 a = 0;
2 a = 5;
3 a = a + 1;
4 // What is a possible value of ’a’?

Example Method Sensitivities Types Literature

[Path-Sensitive Analysis Flow-Sensitive Analysis Context-Sensitive Analysis]

23/31

Data Flow Analysis @yegor256

Context-Sensitive Analysis

A context-sensitive analysis is an interprocedural analysis that considers

the calling context when analyzing the target of a function call.

1 f(5, 6); // call-site #1
2 f(6, 5); // call-site #2
3 void f(x, y) {
4 // Is it possible to have x == y?
5 }

Example Method Sensitivities Types Literature 24/31

Data Flow Analysis @yegor256

Chapter #4:

Most Common Types

Example Method Sensitivities Types Literature

[Reaching Liveness Assignment Available Constants]

25/31

Data Flow Analysis @yegor256

Reaching Definitions Analysis

Reaching definitions is a data-flow analysis which statically determines

which definitions may reach a given point in the code.

1 float price(int book) {
2 float p = load_from_database();
3 if (book < 100)
4 p = 14.99;
5 if (book > 50)
6 p = 9.99;
7 float discount = 0.90;
8 return p * discount;
9 }

Do you see any problems with this code?

Example Method Sensitivities Types Literature

[Reaching Liveness Assignment Available Constants]

26/31

Data Flow Analysis @yegor256

Liveness Analysis

Live variable analysis calculates the variables that are live at each point in

the program (they hold values that may be needed in the future).

1 int price(int book_id) {
2 int p;
3 int discount;
4 if (book_id > 400)
5 discount = 10;
6 p = load_price_from_database(book_id);
7 p = (p * 95) / 100;
8 return p;
9 }

Do you see any problems in the code?

Example Method Sensitivities Types Literature

[Reaching Liveness Assignment Available Constants]

27/31

Data Flow Analysis @yegor256

Definite Assignment Analysis

Definite assignment analysis conservatively ensures that a variable or

location is always assigned before it is used.

1 int salary(int user_id) {
2 int s;
3 if (user_id > 400) {
4 s = get_salary_from_mysql(user_id);
5 } else if (user_id < 400) {
6 s = 0;
7 }
8 return s;
9 }

Is there an error in this code?

Example Method Sensitivities Types Literature

[Reaching Liveness Assignment Available Constants]

28/31

Data Flow Analysis @yegor256

Available Expression Analysis

Available expression analysis determines for each point in the program the

set of expressions that need not be recomputed.

1 int price(int book_id) {
2 int p = 14;
3 if (stock(book_id) < 100) {
4 p = 19;
5 } else if (stock(book_id) > 1000) {
6 p = 9;
7 }
8 return p;
9 }

Shall we computer stock(book_id) twice?

Example Method Sensitivities Types Literature

[Reaching Liveness Assignment Available Constants]

29/31

Data Flow Analysis @yegor256

Constant Propagation Analysis

Constant propagation analysis at every statement tells which variables is a

constant: every execution that reaches that point, gives that variable the

same value.

1 float discount(float price) {
2 float d = 0.8;
3 if (price < 14.99)
4 d = 0.93;
5 else
6 d = d + 0.13;
7 return price * d;
8 }

Is there an error in this code?

Example Method Sensitivities Types Literature 30/31

Data Flow Analysis @yegor256

Chapter #5:

Further Reading/Watching

Example Method Sensitivities Types Literature 31/31

Data Flow Analysis @yegor256

Book and slides by Anders Møller et al.

Lectures of Michael Pradel on YouTube.

References

http://cs.au.dk/~amoeller/spa/
https://www.youtube.com/watch?v=rJYgTJaXZU0

