
Program Analysis

Yegor Bugayenko

Lecture #6 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=ItJwyiUFjrs

2/28

Program Analysis @yegor256

Basics

Quality of Analysis

Lattice

Abstract Interpretation

Further Reading/Watching

Basics Quality Lattice Abstract Interpretation Literature 3/28

Program Analysis @yegor256

Chapter #1:
Basics

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

4/28

Program Analysis @yegor256

Syntactic & Semantic Properties

Semantic property can be completely defined with respect to the set of

executions of a program, while a syntactic property can be decided directly

based on the program text.

if (x) { printf("大家好"); }

Which properties are dynamic?

•A program may print a text to the console

•A program may call printf() C library function

•A program prints to the console

•A program consists of one line of code

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

5/28

Program Analysis @yegor256

Rice’s Theorem

Rice’s theorem states that all non-trivial semantic properties of programs

are undecidable.

A property is non-trivial if it is neither true for every partial computable

function, nor false for every partial computable function.

Halting problem is the problem of determining, from 1) a description of an

arbitrary computer program and 2) an input, whether the program will

finish running, or continue to run forever. A general algorithm to solve the

halting problem for all possible program–input pairs cannot exist.

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

6/28

Program Analysis @yegor256

Non-trivial Properties

Examples of a non-trivial properties:

•A program exits

•A program prints “Hello”

•A program finishes in less than 5 seconds

•A program dies with “Segmentation Fault”

•A program prints user password to the console

Suggest a few properties.

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

7/28

Program Analysis @yegor256

Static Analysis

Consider two C++ programs given to a static analyzer (e.g. Clang Tidy):

int f() {
int x = 0;
return 42 / x;

}

int f(int x) {
return 42 / x;

}

Expected answers from Clang Tidy:

Yes! :) No :(

https://clang.llvm.org/extra/clang-tidy/

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

8/28

Program Analysis @yegor256

Style Checking

Consider two C++ programs given to a style checker (e.g. cpplint):

int f (int x)
{

return 42 / x;
}

int foo(int x) {
return 42 / x;

}

Expected answers from cpplint:

Extra space before (in
function call ; { should
almost always be at the end
of the previous line

No :(

https://github.com/cpplint/cpplint

Basics Quality Lattice Abstract Interpretation Literature

[Property Rice Non-trivial Static Style Dynamic]

9/28

Program Analysis @yegor256

Dynamic Analysis

Consider this C++ program (Clang Tidy finds no issues) given to a dynamic
analyzer (AddressSanitizer):

int foo(int i) {
int a[5];
return a[i];

}
int main() {

return foo(6);
}

$ gcc -fsanitize=address -g a.cpp
$./a.out

Dynamic analysis == testing.

https://en.wikipedia.org/wiki/Code_sanitizer

Basics Quality Lattice Abstract Interpretation Literature 10/28

Program Analysis @yegor256

Chapter #2:

Quality of Analysis

Basics Quality Lattice Abstract Interpretation Literature

[Sound Metrics Experiment Flip]

11/28

Program Analysis @yegor256

Sound & Complete

Basics Quality Lattice Abstract Interpretation Literature

[Sound Metrics Experiment Flip]

12/28

Program Analysis @yegor256

Precision & Recall

Precision is the fraction of relevant instances among the retrieved

instances (100% precision means soundness).

Recall is the fraction of relevant instances that were retrieved (100% recall

means completeness).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
Accuracy =

TP + TN

TP + TN + FP + FN

F1 =
2× TP

2× TP + FP + FN

Basics Quality Lattice Abstract Interpretation Literature

[Sound Metrics Experiment Flip]

13/28

Program Analysis @yegor256

Experiment

Say, we give a few programs to a static analyzer:

a

Yes

b

Yes

c

No

d

Yes

e

No

f

Yes

g

Yes

h

No

TP = FP = TN = FN =

Precision =
TP

TP + FP
= Recall =

TP

TP + FN
=

Accuracy =
TP + TN

TP + TN + FP + FN
= F1 =

2× TP

2× TP + FP + FN
=

Basics Quality Lattice Abstract Interpretation Literature

[Sound Metrics Experiment Flip]

14/28

Program Analysis @yegor256

Flip of Terminology

Soundness and Completeness: With Precision by Prof. Bertrand Meyer, in

Blog@CACM: “It is very easy to obtain soundness if we forsake

completeness: reject every case.”

https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext

Basics Quality Lattice Abstract Interpretation Literature 15/28

Program Analysis @yegor256

Chapter #3:
Lattice

Basics Quality Lattice Abstract Interpretation Literature

[Loset Poset Lattice Intervals]

16/28

Program Analysis @yegor256

Total Order

Total order is a binary relation ≤ (strict total order is <).

Lineary ordered set (loset) is a set equipped with a total order.

Which of them are losets?:

{1,−5, 2, 0, 42}

{3, 5,−9, 5, 12}

{3, 5, "Hello", 12, 5.0}

{x, y, z}

∅

Basics Quality Lattice Abstract Interpretation Literature

[Loset Poset Lattice Intervals]

17/28

Program Analysis @yegor256

Partially Ordered Set

Partial order is total order but only between some elements.

Partially ordered set (poset) is a set equipped with a partial order.

Which of them are posets?:

{1, "apple", 2,−7, "orange"}

{3, 5,−9, 5, 12}

{0, 1, 2, 3, . . . }

{x, y, z}

∅

Basics Quality Lattice Abstract Interpretation Literature

[Loset Poset Lattice Intervals]

18/28

Program Analysis @yegor256

Lattice

Lattice is a poset where each two elements (x, y) have least upper bound
(join operator x ⊔ y) and greatest lower bound (meet operator x ⊓ y).

{42, 2, 13}

42

13

2

42 ⊔ 2 = . . .

{A, 7, 19, B}

B

A

19

7

A ⊔ 7 = . . .

{A,⊤, 9, B,⊥}

⊤

B

A

9

⊥
A ⊔ 9 = . . .
B ⊓ 9 = . . .

{⊤,⊥, a, b, c, d}

⊤

a

b

c

d

⊥
b ⊔ d = . . .
a ⊓ c = . . .

Basics Quality Lattice Abstract Interpretation Literature

[Loset Poset Lattice Intervals]

19/28

Program Analysis @yegor256

Intervals

A lattice may be used to represent intervals in a set of values, e.g. in Z:

(−∞,+∞)

(−∞, 0) (0,+∞){0}

{1, 3, 5, . . . } {2, 4, 6, . . . }

{2, 4, 8, 16, . . . }

∅

Partial order is ∈.

Basics Quality Lattice Abstract Interpretation Literature 20/28

Program Analysis @yegor256

Chapter #4:

Abstract Interpretation

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

21/28

Program Analysis @yegor256

What is it about?

There is a compromise to be made between the precision of the analysis

and its decidability (computability), or tractability (computational cost).

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

22/28

Program Analysis @yegor256

Over and Under Approximation

What is the square of this oval?

1) over-approximation

2) under-approximation

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

23/28

Program Analysis @yegor256

Abstraction and Concretization

Concrete domain C
(Z, <)

12

7

4

0

−9

Abstract domain A
({s|{n|n ∈ N}},∈)

N

2x 3x

2x 6x

∅

Abstraction function:

α(c) → a

Concretization function:

γ(a) → c

Domains must be related

through Galois connection:
∀c ∈ C, ∀a ∈ A
α(c) ⊑ a ⇐⇒ c ⊑ γ(a)

Are they?

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

24/28

Program Analysis @yegor256

Abstract Semantics (Transformers)

Abstract domain:

N

2x 3x

2x 6x

∅

Transformers:

N + N = . . .

2x + 2x = . . .

2x + 3x = . . .

2x× 3x = . . .

∅ + 2x = . . .

Concrete counterparts:

1024 + 1 = . . .

46 + 4 = . . .

8 + 9 = . . .

6× 12 = . . .

−1 + 4 = . . .

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

25/28

Program Analysis @yegor256

Widening and Narrowing

⊤

E

N

N+

0 1 2 3 4+

⊥

0▽ 1 = . . .

1▽ N+ = . . .

0▽ N+ = . . .

1△ N+ = . . .

0△ 1 = . . .

3△ 4+ = . . .

Basics Quality Lattice Abstract Interpretation Literature

[WTF Approximation Functions Transformers Widening Fixed-Point]

26/28

Program Analysis @yegor256

Fixed-Point Computation

Fixed-Point Computation is a repeated symbolic execution of the program

using abstract semantics until approximation reaches an equilibrium.

int f(int x) {
while x > 0 {

x = x - 1;
x = 2 / x;

}
return x;

}

◦

x > 0

x = x - 1

x = 2 / x

◦

⊤

E

N

N+

0 1 2 3 4+

⊥

Basics Quality Lattice Abstract Interpretation Literature 27/28

Program Analysis @yegor256

Chapter #5:

Further Reading/Watching

Basics Quality Lattice Abstract Interpretation Literature 28/28

Program Analysis @yegor256

Lecture by Patrick Cousot, on YouTube

Mozilla wiki page on Abstract Interpretation.

Slide deck of Işil Dillig.

Introduction to Abstract Interpretation by Bruno Blanchet.

References

https://www.youtube.com/watch?v=IBlfJerAcRw
https://wiki.mozilla.org/Abstract_Interpretation
https://www.cs.utexas.edu/~isil/cs389L/AI-6up.pdf
https://bblanche.gitlabpages.inria.fr/absint.pdf

