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Syntactic & Semantic Properties

Semantic property can be completely defined with respect to the set of

executions of a program, while a syntactic property can be decided directly

based on the program text.

if (x) { printf("大家好"); }

Which properties are dynamic?

•A program may print a text to the console

•A program may call printf() C library function

•A program prints to the console

•A program consists of one line of code
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Rice’s Theorem

Rice’s theorem states that all non-trivial semantic properties of programs

are undecidable.

A property is non-trivial if it is neither true for every partial computable

function, nor false for every partial computable function.

Halting problem is the problem of determining, from 1) a description of an

arbitrary computer program and 2) an input, whether the program will

finish running, or continue to run forever. A general algorithm to solve the

halting problem for all possible program–input pairs cannot exist.
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Non-trivial Properties

Examples of a non-trivial properties:

•A program exits

•A program prints “Hello”

•A program finishes in less than 5 seconds

•A program dies with “Segmentation Fault”

•A program prints user password to the console

Suggest a few properties.
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Static Analysis

Consider two C++ programs given to a static analyzer (e.g. Clang Tidy):

int f() {
int x = 0;
return 42 / x;

}

int f(int x) {
return 42 / x;

}

Expected answers from Clang Tidy:

Yes! :) No :(

https://clang.llvm.org/extra/clang-tidy/
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Style Checking

Consider two C++ programs given to a style checker (e.g. cpplint):

int f (int x)
{

return 42 / x;
}

int foo(int x) {
return 42 / x;

}

Expected answers from cpplint:

Extra space before ( in
function call ; { should
almost always be at the end
of the previous line

No :(

https://github.com/cpplint/cpplint
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Dynamic Analysis

Consider this C++ program (Clang Tidy finds no issues) given to a dynamic
analyzer (AddressSanitizer):

int foo(int i) {
int a[5];
return a[i];

}
int main() {

return foo(6);
}

$ gcc -fsanitize=address -g a.cpp
$ ./a.out

Dynamic analysis == testing.

https://en.wikipedia.org/wiki/Code_sanitizer
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Sound & Complete
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Precision & Recall

Precision is the fraction of relevant instances among the retrieved

instances (100% precision means soundness).

Recall is the fraction of relevant instances that were retrieved (100% recall

means completeness).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
Accuracy =

TP + TN

TP + TN + FP + FN

F1 =
2× TP

2× TP + FP + FN
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Experiment

Say, we give a few programs to a static analyzer:

a

Yes

b

Yes

c

No

d

Yes

e

No

f

Yes

g

Yes

h

No

TP = FP = TN = FN =

Precision =
TP

TP + FP
= Recall =

TP

TP + FN
=

Accuracy =
TP + TN

TP + TN + FP + FN
= F1 =

2× TP

2× TP + FP + FN
=
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Flip of Terminology

Soundness and Completeness: With Precision by Prof. Bertrand Meyer, in

Blog@CACM: “It is very easy to obtain soundness if we forsake

completeness: reject every case.”

https://cacm.acm.org/blogs/blog-cacm/236068-soundness-and-completeness-with-precision/fulltext
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Total Order

Total order is a binary relation ≤ (strict total order is <).

Lineary ordered set (loset) is a set equipped with a total order.

Which of them are losets?:

{1,−5, 2, 0, 42}

{3, 5,−9, 5, 12}

{3, 5, "Hello", 12, 5.0}

{x, y, z}

∅
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Partially Ordered Set

Partial order is total order but only between some elements.

Partially ordered set (poset) is a set equipped with a partial order.

Which of them are posets?:

{1, "apple", 2,−7, "orange"}

{3, 5,−9, 5, 12}

{0, 1, 2, 3, . . . }

{x, y, z}

∅
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Lattice

Lattice is a poset where each two elements (x, y) have least upper bound
(join operator x ⊔ y) and greatest lower bound (meet operator x ⊓ y).

{42, 2, 13}

42

13

2

42 ⊔ 2 = . . .

{A, 7, 19, B}

B

A

19

7

A ⊔ 7 = . . .

{A,⊤, 9, B,⊥}

⊤

B

A

9

⊥
A ⊔ 9 = . . .
B ⊓ 9 = . . .

{⊤,⊥, a, b, c, d}

⊤

a

b

c

d

⊥
b ⊔ d = . . .
a ⊓ c = . . .
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Intervals

A lattice may be used to represent intervals in a set of values, e.g. in Z:

(−∞,+∞)

(−∞, 0) (0,+∞){0}

{1, 3, 5, . . . } {2, 4, 6, . . . }

{2, 4, 8, 16, . . . }

∅

Partial order is ∈.
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Chapter #4:

Abstract Interpretation
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What is it about?

There is a compromise to be made between the precision of the analysis

and its decidability (computability), or tractability (computational cost).
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Over and Under Approximation

What is the square of this oval?

1) over-approximation

2) under-approximation
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Abstraction and Concretization

Concrete domain C
(Z, <)

12

7

4

0

−9

Abstract domain A
({s|{n|n ∈ N}},∈)

N

2x 3x

2x 6x

∅

Abstraction function:

α(c) → a

Concretization function:

γ(a) → c

Domains must be related

through Galois connection:
∀c ∈ C, ∀a ∈ A
α(c) ⊑ a ⇐⇒ c ⊑ γ(a)

Are they?
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Abstract Semantics (Transformers)

Abstract domain:

N

2x 3x

2x 6x

∅

Transformers:

N + N = . . .

2x + 2x = . . .

2x + 3x = . . .

2x× 3x = . . .

∅ + 2x = . . .

Concrete counterparts:

1024 + 1 = . . .

46 + 4 = . . .

8 + 9 = . . .

6× 12 = . . .

−1 + 4 = . . .
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Widening and Narrowing

⊤

E

N

N+

0 1 2 3 4+

⊥

0▽ 1 = . . .

1▽ N+ = . . .

0▽ N+ = . . .

1△ N+ = . . .

0△ 1 = . . .

3△ 4+ = . . .
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Fixed-Point Computation

Fixed-Point Computation is a repeated symbolic execution of the program

using abstract semantics until approximation reaches an equilibrium.

int f(int x) {
while x > 0 {

x = x - 1;
x = 2 / x;

}
return x;

}

◦

x > 0

x = x - 1

x = 2 / x

◦

⊤

E

N

N+

0 1 2 3 4+

⊥
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Further Reading/Watching
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Lecture by Patrick Cousot, on YouTube

Mozilla wiki page on Abstract Interpretation.

Slide deck of Işil Dillig.

Introduction to Abstract Interpretation by Bruno Blanchet.
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