
Abstract Machines

Yegor Bugayenko

Lecture #5 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=IPbuj67q5NM

2/17

Abstract Machines @yegor256

Who Are Abstract Machines?

Turing Machine

λ-calculus

SECD Machine(s)

Semantic

Machines Turing λ SECD Semantic 3/17

Abstract Machines @yegor256

Chapter #1:

Who Are Abstract Machines?

Machines Turing λ SECD Semantic

[Definition Purpose Virtual Machines LLVM]

4/17

Abstract Machines @yegor256

Definition

An abstract machine is a theoretical model of computation.

Similar to a function, a machine receives inputs and produces outputs
based on predefined rules.

Abstract machines are “machines” because they allow step-by-step
execution of programmes. (really?)

They are “abstract” because they ignore many aspects of actual (hardware)

machines.

An abstract machine is an intermediate language with a small-step

operational semantics.

Machines Turing λ SECD Semantic

[Definition Purpose Virtual Machines LLVM]

5/17

Abstract Machines @yegor256

Purpose

“The implementation of a programming language consists of two stages.

The implementation of the compiler and the implementation of the

abstract (virtual?) machine. This is a typical divide-and-conquer approach.

From a pedagogical point of view, this simplifies the presentation and

teaching of the principles of programming language implementations.

From a software engineering point of view, the introduction of layers of

abstraction increases maintainability and portability.” (1999)

We are interested in using abstract machines to explain the semantic of a
program.

https://www.sciencedirect.com/science/article/abs/pii/S0167739X99000886

Machines Turing λ SECD Semantic

[Definition Purpose Virtual Machines LLVM]

6/17

Abstract Machines @yegor256

Virtual Machines

An abstract machine implemented in software is termed a virtual machine,
and one implemented in hardware is called simply a “machine.”

JVM (for Java) and CLR (for .NET) are among most notable examples of

virtual machines.

IR (intermediate representation) is used internally by a compiler or virtual

machine to represent source code. An intermediate language is the
language of an abstract machine.

Machines Turing λ SECD Semantic

[Definition Purpose Virtual Machines LLVM]

7/17

Abstract Machines @yegor256

LLVM

LLVM (Low Level Virtual Machine) is a standard de-facto.

Machines Turing λ SECD Semantic 8/17

Abstract Machines @yegor256

Chapter #2:

Turing Machine

Machines Turing λ SECD Semantic 9/17

Abstract Machines @yegor256

Turing Machine was the first (1936) ... but not the simplest.

For example, Emil Post’s Machine is simpler.

Machines Turing λ SECD Semantic

[Proof]

10/17

Abstract Machines @yegor256

Proof

The Church-Turing thesis: Anything that can be computed can be

computed by some Turing machine.

There has never been a proof, but the evidence for its validity comes

from the fact that every realistic model of computation, yet discovered,

has been shown to be equivalent. — here.

https://mathworld.wolfram.com/Church-TuringThesis.html

Machines Turing λ SECD Semantic 11/17

Abstract Machines @yegor256

Chapter #3:

λ-calculus

Machines Turing λ SECD Semantic 12/17

Abstract Machines @yegor256

Abstraction:

(λx.t) e.g. f = λx.
√
x

Application:

(ts) e.g. (f 16) = 4

In lambda calculus, functions are taken to be “first class values,” so

functions may be used as the inputs, or be returned as outputs from other

functions.

Machines Turing λ SECD Semantic 13/17

Abstract Machines @yegor256

Chapter #4:

SECD Machine(s)

Machines Turing λ SECD Semantic 14/17

Abstract Machines @yegor256

There are SECD (stack, environment, control, dump), CESK, CEK, CS, and

maybe other abstract machines.

I like the CRM (control stack, result stack, memory) machine explained by

Michael Pradel in his YouTube course about program analysis: ⟨c, r,m⟩.

⟨x := 2× 3, nil, {}⟩ −→ ⟨x ◦ 2× 3 ◦:=, nil, {}⟩
−→ ⟨2× 3 ◦:=, x ◦ nil, {}⟩
−→ ⟨:=, 6 ◦ x ◦ nil, {}⟩
−→ ⟨nil, nil, {x 7→ 6}⟩

https://software-lab.org/people/Michael_Pradel.html
https://www.youtube.com/watch?v=YRfb2zDk_qs

Machines Turing λ SECD Semantic 15/17

Abstract Machines @yegor256

Chapter #5:

Semantic

Machines Turing λ SECD Semantic 16/17

Abstract Machines @yegor256

This is our programming language that helps us draw on a canvas:

L 10, 20, 15, 23;
C 13, 13, 35;
L 5, 28, 15, 12;

Its semantic may be explained by

the abstract machine with the

following instruction set, which

semantic is obvious to a reader:

DRAW x, y;
LOOP; IF t THEN BREAK; END LOOP;
x > y; x + y; x - y; x / y;
x := y;
1600; 900.

Machines Turing λ SECD Semantic 17/17

Abstract Machines @yegor256

This is what "L x1, y1, x2, y2" means:

dx := x2 - x1;
dx := dx / 1600;
dy := y2 - y1;
dy := dy / 900;
LOOP;
DRAW x1, y1;
IF x1 > x2 THEN BREAK;
IF y1 > y2 THEN BREAK;
x1 := x1 + dx;
y1 := y1 + dy;
END LOOP;

(x1, y1)

(x2, y2)

References

