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Definition

An abstract machine is a theoretical model of computation.

Similar to a function, a machine receives inputs and produces outputs
based on predefined rules.

Abstract machines are “machines” because they allow step-by-step
execution of programmes. (really?)

They are “abstract” because they ignore many aspects of actual (hardware)

machines.

An abstract machine is an intermediate language with a small-step

operational semantics.
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Purpose

“The implementation of a programming language consists of two stages.

The implementation of the compiler and the implementation of the

abstract (virtual?) machine. This is a typical divide-and-conquer approach.

From a pedagogical point of view, this simplifies the presentation and

teaching of the principles of programming language implementations.

From a software engineering point of view, the introduction of layers of

abstraction increases maintainability and portability.” (1999)

We are interested in using abstract machines to explain the semantic of a
program.

https://www.sciencedirect.com/science/article/abs/pii/S0167739X99000886
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Virtual Machines

An abstract machine implemented in software is termed a virtual machine,
and one implemented in hardware is called simply a “machine.”

JVM (for Java) and CLR (for .NET) are among most notable examples of

virtual machines.

IR (intermediate representation) is used internally by a compiler or virtual

machine to represent source code. An intermediate language is the
language of an abstract machine.
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LLVM

LLVM (Low Level Virtual Machine) is a standard de-facto.
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Turing Machine
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Turing Machine was the first (1936) ... but not the simplest.

For example, Emil Post’s Machine is simpler.
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Proof

The Church-Turing thesis: Anything that can be computed can be

computed by some Turing machine.

There has never been a proof, but the evidence for its validity comes

from the fact that every realistic model of computation, yet discovered,

has been shown to be equivalent. — here.

https://mathworld.wolfram.com/Church-TuringThesis.html
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λ-calculus
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Abstraction:

(λx.t) e.g. f = λx.
√
x

Application:

(ts) e.g. (f 16) = 4

In lambda calculus, functions are taken to be “first class values,” so

functions may be used as the inputs, or be returned as outputs from other

functions.
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SECD Machine(s)
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There are SECD (stack, environment, control, dump), CESK, CEK, CS, and

maybe other abstract machines.

I like the CRM (control stack, result stack, memory) machine explained by

Michael Pradel in his YouTube course about program analysis: ⟨c, r,m⟩.

⟨x := 2× 3, nil, {}⟩ −→ ⟨x ◦ 2× 3 ◦:=, nil, {}⟩
−→ ⟨2× 3 ◦:=, x ◦ nil, {}⟩
−→ ⟨:=, 6 ◦ x ◦ nil, {}⟩
−→ ⟨nil, nil, {x 7→ 6}⟩

https://software-lab.org/people/Michael_Pradel.html
https://www.youtube.com/watch?v=YRfb2zDk_qs
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Semantic
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This is our programming language that helps us draw on a canvas:

L 10, 20, 15, 23;
C 13, 13, 35;
L 5, 28, 15, 12;

Its semantic may be explained by

the abstract machine with the

following instruction set, which

semantic is obvious to a reader:

DRAW x, y;
LOOP; IF t THEN BREAK; END LOOP;
x > y; x + y; x - y; x / y;
x := y;
1600; 900.
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This is what "L x1, y1, x2, y2" means:

dx := x2 - x1;
dx := dx / 1600;
dy := y2 - y1;
dy := dy / 900;
LOOP;
DRAW x1, y1;
IF x1 > x2 THEN BREAK;
IF y1 > y2 THEN BREAK;
x1 := x1 + dx;
y1 := y1 + dy;
END LOOP;

(x1, y1)

(x2, y2)
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