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While syntax is a representation of a program, semantics S(P ) is a formal

description of execution of P : reachable states, execution traces, etc.

Chapter #1:

Rules, Axioms, Trees
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Inference Rule

A proof system is formed from a set of inference rules chained together to

form proofs, also called derivations. Any derivation has only one final

conclusion, which is the statement proved or derived. (Wiki)

⊢ a < b ⊢ b < c
R1

a < c

Premises (known facts): a < b and b < c.
(antecedent)

Conclusion (new fact): a < c.
(consequent)
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Axiom

An axiom is an inference rule without a premise.

A1
⊢ x× 0 = 0

It reads: in any environment, the result of multiplication of x by zero

equals to zero.
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Transition Rule

A transition rule defines the conditions under which a system may be

moved to a new state.

⟨a, s⟩ −→ ⟨n, s⟩

⟨a++, s⟩ −→ ⟨n, s[a 7→ n + 1]⟩

It reads: if a produces n without changing the state, then a++ may

produce n changing the state by adding a new mapping a 7→ n.
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The following set of transition rules may constitute the entire semantic of

a language:

⟨x, s⟩ −→ ⟨s[x], s⟩ ⟨n, s⟩ −→ ⟨n, s⟩

⟨y, s⟩ −→ ⟨n, s⟩

⟨x:=y, s⟩ −→ ⟨skip, s[x 7→ n]⟩

⟨C1, s⟩ −→ ⟨skip, s′⟩ ⟨C2, s
′⟩ −→ ⟨n, s′′⟩

⟨C1;C2, s⟩ −→ ⟨n, s′′⟩

⟨x, s⟩ −→ ⟨n, s⟩

⟨x++, s⟩ −→ ⟨n, s[x 7→ n + 1]⟩
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Proof Tree

Let’s prove that a:=5;a++++; equals to 6:

Transition rules:

⟨x, s⟩ −→ ⟨s[x], s⟩ ⟨n, s⟩ −→ ⟨n, s⟩

⟨y, s⟩ −→ ⟨n, s⟩
⟨x:=y, s⟩ −→ ⟨skip, s[x 7→ n]⟩

⟨C1, s⟩ −→ ⟨skip, s′⟩ ⟨C2, s
′⟩ −→ ⟨n, s′′⟩

⟨C1;C2, s⟩ −→ ⟨n, s′′⟩

⟨x, s⟩ −→ ⟨n, s⟩
⟨x++, s⟩ −→ ⟨n, s[x 7→ n + 1]⟩

Proof tree:

⟨5, {}⟩ −→ ⟨5, {}⟩

⟨a:=5, {}⟩ −→ ⟨skip, {a 7→ 5}⟩

⟨a, {a 7→ 5}⟩ −→ ⟨5, {a 7→ 5}⟩

⟨a++, {a 7→ 5}⟩ −→ ⟨5, {a 7→ 6}⟩

⟨a++++, {a 7→ 5}⟩ −→ ⟨6, {a 7→ 7}⟩

⟨a:=5;a++++, {}⟩ −→ ⟨6, {a 7→ 7}⟩
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Chapter #2:

Operational vs Denotational
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The denotational semantics assign to every expression the number denoted
by that expression:

⇓⊆ A×D
xn ⇓ y where y = x× x× x · · · × x (n times)

The operational semantics describe the computation steps taken in order to

evaluate the expression to normal form:

⇝⊆ A×A
1) xn⇝ x× xn−1

if x > 0 2) x0⇝ 1

The operational semantics is the specification of an interpreter for the
programming language whereas the denotational semantics tries to

capture the mathematical essence of a program, abstracting away from

computational details.



Rules Vs. Natural SOS Reduction Literature 11/20

Formal Semantics @yegor256

Chapter #3:

Natural Semantic (Denotational)
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Syntax: FASTER; STOP; SLOWER;
Semantic ( ⇓⊆ ⟨COMMAND,N⟩ × ⟨B,N⟩ ):

⟨STOP, s⟩ ⇓ ⟨tt, 0⟩
R1

s < 60

⟨FASTER, s⟩ ⇓ ⟨tt, s + 20⟩
R2

s ≥ 60

⟨FASTER, s⟩ ⇓ ⟨ff, s⟩
R3

⟨SLOWER, s⟩ ⇓ ⟨tt,max(0, s− 20)⟩
R4

⟨C1, s⟩ ⇓ ⟨r1, s′⟩ ⟨C2, s
′⟩ ⇓ ⟨r2, s′′⟩

⟨C1;C2, s⟩ ⇓ ⟨r1 ∧ r2, s′′⟩
R5

Introduced by Gilles Kahn in 1987.
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Proof Tree

45 < 60
R2

⟨FASTER, 45⟩ ⇓ ⟨tt, 65⟩

65 > 60
R3

⟨FASTER, 65⟩ ⇓ ⟨ff, 65⟩
R5

⟨FASTER; FASTER, 45⟩ ⇓ ⟨ff, 65⟩ ⟨SLOWER, 65⟩ ⇓ ⟨tt, 45⟩
R5

⟨FASTER; FASTER; SLOWER, 45⟩ ⇓ ⟨ff, 45⟩

The tree is built from the bottom to the top, using the rules introduced

before. The gray conditions at the top are not parts of the rules, that’s why

in gray.
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Chapter #4:

Structural Semantic (Operational)
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Consider a program:

1 x := x + 1;

The meaning of it may be explained by the SOS rule:

⟨e, s⟩ −→ ⟨n, s⟩
⟨a := e, s⟩ −→ ⟨skip, s[a 7→ n]⟩

It reads: If e may be evaluated to n, then a := e inserts a new binding

a 7→ n to the state, and skips any further processing. To understand the

meaning of x+1 a new SOS rule is required.

Introduced by Gordon Plotkin in 1981.
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Chapter #5:

Reduction Semantic
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Consider a λ-expression:
(λa.a)b

In Java it would look like this:

1 int f(int a) { return a; }
2 int x = f(b);

The expression may be reduced using so called β-reduction:

(λx.t)s −→ t[x := s]

Thus

(λa.a)b −→ b
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Normal Form

A normal form is a form that has no more possible applications of

reductions. This not a normal form:

(λa.a)((λb.b)((λc.c)d))

It may be reduced to a normal form:

−→β (λa.a)((λb.b)d)

−→β (λa.a)d

−→β d

No further reductions are possible.
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Chapter #6:

Further Reading/Watching
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