
Formal Semantics

Yegor Bugayenko

Lecture #4 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=xtu4WODOU1M

2/20

Formal Semantics @yegor256

Rules, Axioms, Trees

Operational vs Denotational

Natural Semantic (Denotational)

Structural Semantic (Operational)

Reduction Semantic

Further Reading/Watching

Rules Vs. Natural SOS Reduction Literature 3/20

Formal Semantics @yegor256

While syntax is a representation of a program, semantics S(P) is a formal

description of execution of P : reachable states, execution traces, etc.

Chapter #1:

Rules, Axioms, Trees

Rules Vs. Natural SOS Reduction Literature

[Inference Axiom Transition Tree]

4/20

Formal Semantics @yegor256

Inference Rule

A proof system is formed from a set of inference rules chained together to

form proofs, also called derivations. Any derivation has only one final

conclusion, which is the statement proved or derived. (Wiki)

⊢ a < b ⊢ b < c
R1

a < c

Premises (known facts): a < b and b < c.
(antecedent)

Conclusion (new fact): a < c.
(consequent)

Rules Vs. Natural SOS Reduction Literature

[Inference Axiom Transition Tree]

5/20

Formal Semantics @yegor256

Axiom

An axiom is an inference rule without a premise.

A1
⊢ x× 0 = 0

It reads: in any environment, the result of multiplication of x by zero

equals to zero.

Rules Vs. Natural SOS Reduction Literature

[Inference Axiom Transition Tree]

6/20

Formal Semantics @yegor256

Transition Rule

A transition rule defines the conditions under which a system may be

moved to a new state.

⟨a, s⟩ −→ ⟨n, s⟩

⟨a++, s⟩ −→ ⟨n, s[a 7→ n + 1]⟩

It reads: if a produces n without changing the state, then a++ may

produce n changing the state by adding a new mapping a 7→ n.

Rules Vs. Natural SOS Reduction Literature

[Inference Axiom Transition Tree]

7/20

Formal Semantics @yegor256

The following set of transition rules may constitute the entire semantic of

a language:

⟨x, s⟩ −→ ⟨s[x], s⟩ ⟨n, s⟩ −→ ⟨n, s⟩

⟨y, s⟩ −→ ⟨n, s⟩

⟨x:=y, s⟩ −→ ⟨skip, s[x 7→ n]⟩

⟨C1, s⟩ −→ ⟨skip, s′⟩ ⟨C2, s
′⟩ −→ ⟨n, s′′⟩

⟨C1;C2, s⟩ −→ ⟨n, s′′⟩

⟨x, s⟩ −→ ⟨n, s⟩

⟨x++, s⟩ −→ ⟨n, s[x 7→ n + 1]⟩

Rules Vs. Natural SOS Reduction Literature

[Inference Axiom Transition Tree]

8/20

Formal Semantics @yegor256

Proof Tree

Let’s prove that a:=5;a++++; equals to 6:

Transition rules:

⟨x, s⟩ −→ ⟨s[x], s⟩ ⟨n, s⟩ −→ ⟨n, s⟩

⟨y, s⟩ −→ ⟨n, s⟩
⟨x:=y, s⟩ −→ ⟨skip, s[x 7→ n]⟩

⟨C1, s⟩ −→ ⟨skip, s′⟩ ⟨C2, s
′⟩ −→ ⟨n, s′′⟩

⟨C1;C2, s⟩ −→ ⟨n, s′′⟩

⟨x, s⟩ −→ ⟨n, s⟩
⟨x++, s⟩ −→ ⟨n, s[x 7→ n + 1]⟩

Proof tree:

⟨5, {}⟩ −→ ⟨5, {}⟩

⟨a:=5, {}⟩ −→ ⟨skip, {a 7→ 5}⟩

⟨a, {a 7→ 5}⟩ −→ ⟨5, {a 7→ 5}⟩

⟨a++, {a 7→ 5}⟩ −→ ⟨5, {a 7→ 6}⟩

⟨a++++, {a 7→ 5}⟩ −→ ⟨6, {a 7→ 7}⟩

⟨a:=5;a++++, {}⟩ −→ ⟨6, {a 7→ 7}⟩

Rules Vs. Natural SOS Reduction Literature 9/20

Formal Semantics @yegor256

Chapter #2:

Operational vs Denotational

Rules Vs. Natural SOS Reduction Literature 10/20

Formal Semantics @yegor256

The denotational semantics assign to every expression the number denoted
by that expression:

⇓⊆ A×D
xn ⇓ y where y = x× x× x · · · × x (n times)

The operational semantics describe the computation steps taken in order to

evaluate the expression to normal form:

⇝⊆ A×A
1) xn⇝ x× xn−1

if x > 0 2) x0⇝ 1

The operational semantics is the specification of an interpreter for the
programming language whereas the denotational semantics tries to

capture the mathematical essence of a program, abstracting away from

computational details.

Rules Vs. Natural SOS Reduction Literature 11/20

Formal Semantics @yegor256

Chapter #3:

Natural Semantic (Denotational)

Rules Vs. Natural SOS Reduction Literature 12/20

Formal Semantics @yegor256

Syntax: FASTER; STOP; SLOWER;
Semantic (⇓⊆ ⟨COMMAND,N⟩ × ⟨B,N⟩):

⟨STOP, s⟩ ⇓ ⟨tt, 0⟩
R1

s < 60

⟨FASTER, s⟩ ⇓ ⟨tt, s + 20⟩
R2

s ≥ 60

⟨FASTER, s⟩ ⇓ ⟨ff, s⟩
R3

⟨SLOWER, s⟩ ⇓ ⟨tt,max(0, s− 20)⟩
R4

⟨C1, s⟩ ⇓ ⟨r1, s′⟩ ⟨C2, s
′⟩ ⇓ ⟨r2, s′′⟩

⟨C1;C2, s⟩ ⇓ ⟨r1 ∧ r2, s′′⟩
R5

Introduced by Gilles Kahn in 1987.

Rules Vs. Natural SOS Reduction Literature

[Tree]

13/20

Formal Semantics @yegor256

Proof Tree

45 < 60
R2

⟨FASTER, 45⟩ ⇓ ⟨tt, 65⟩

65 > 60
R3

⟨FASTER, 65⟩ ⇓ ⟨ff, 65⟩
R5

⟨FASTER; FASTER, 45⟩ ⇓ ⟨ff, 65⟩ ⟨SLOWER, 65⟩ ⇓ ⟨tt, 45⟩
R5

⟨FASTER; FASTER; SLOWER, 45⟩ ⇓ ⟨ff, 45⟩

The tree is built from the bottom to the top, using the rules introduced

before. The gray conditions at the top are not parts of the rules, that’s why

in gray.

Rules Vs. Natural SOS Reduction Literature 14/20

Formal Semantics @yegor256

Chapter #4:

Structural Semantic (Operational)

Rules Vs. Natural SOS Reduction Literature 15/20

Formal Semantics @yegor256

Consider a program:

1 x := x + 1;

The meaning of it may be explained by the SOS rule:

⟨e, s⟩ −→ ⟨n, s⟩
⟨a := e, s⟩ −→ ⟨skip, s[a 7→ n]⟩

It reads: If e may be evaluated to n, then a := e inserts a new binding

a 7→ n to the state, and skips any further processing. To understand the

meaning of x+1 a new SOS rule is required.

Introduced by Gordon Plotkin in 1981.

Rules Vs. Natural SOS Reduction Literature 16/20

Formal Semantics @yegor256

Chapter #5:

Reduction Semantic

Rules Vs. Natural SOS Reduction Literature 17/20

Formal Semantics @yegor256

Consider a λ-expression:
(λa.a)b

In Java it would look like this:

1 int f(int a) { return a; }
2 int x = f(b);

The expression may be reduced using so called β-reduction:

(λx.t)s −→ t[x := s]

Thus

(λa.a)b −→ b

Rules Vs. Natural SOS Reduction Literature

[NF]

18/20

Formal Semantics @yegor256

Normal Form

A normal form is a form that has no more possible applications of

reductions. This not a normal form:

(λa.a)((λb.b)((λc.c)d))

It may be reduced to a normal form:

−→β (λa.a)((λb.b)d)

−→β (λa.a)d

−→β d

No further reductions are possible.

Rules Vs. Natural SOS Reduction Literature 19/20

Formal Semantics @yegor256

Chapter #6:

Further Reading/Watching

Rules Vs. Natural SOS Reduction Literature 20/20

Formal Semantics @yegor256

Christopher Strachey (2000),

Fundamental Concepts in Programming Languages

Alexander Kurz (2022),

Operational and Denotational Semantics

Michael Pradel (2021),

Lectures on “Operational Semantics”

Gordon Plotkin (1981),

A Structural Approach to Operational Semantics

References

https://hackmd.io/@alexhkurz/Hkf6BTL6P
https://www.youtube.com/watch?v=jsBHd3-04oA
https://web.eecs.umich.edu/~weimerw/2006-615/reading/plotkin81structural.pdf

