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Chapter #1:

Concrete vs. Abstract
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The concrete syntax of a programming language is defined by a context

free grammar (CFG). The abstract syntax of an implementation is the set of

trees used to represent programs in the implementation.
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Simple program:

1 PRINT "Hi," + name;
2 EXIT;

Concrete Syntax Tree:
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Abstract Syntax Tree:

program

print exit

plus

"Hi," name
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Chapter #2:

Identification
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int x;
loop { int x; x++; };
print x;

program

int x loop print

xint x ++

x

Somehow we must link different x to different places, where they are

declared, maybe with the help of "Identification Table," or by attaching

attributes to AST nodes, or both. We may want to track their indentation
levels.
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Chapter #3:

Static Type Checking
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Dynamically-typed languages perform type checking at runtime, while
statically typed languages perform type checking at compile time.

var x = "Sofi";
loop { var x; x++; };
print "Hello," + x;

program

x="Sofi" loop

var x ++

x

print

+

"Hello," x
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Chapter #4:

AST Visitor
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ANTLR4 lets us implement the following interface:

1 public interface ParseTreeListener {
2 void visitTerminal(TerminalNode var1);
3 void visitErrorNode(ErrorNode var1);
4 void enterEveryRule(ParserRuleContext var1);
5 void exitEveryRule(ParserRuleContext var1);
6 }
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Then:

1 MyLexer lexer = new MyLexer(text); // Lexer
2 MyParser parser = new MyParser(
3 new CommonTokenStream(lexer) // Parser
4 );
5 MyListener lsr = new MyListener(); // ParseTreeListener
6 new ParseTreeWalker().walk(lsr, parser.program());
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Chapter #5:

Decorated AST
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int x;
loop { int x; x++; };
print x;

program

int x loop print

xint x ++

x

i31

i32

i32,int

i31,int



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 17/19

Contextual Analysis @yegor256

Chapter #6:

Control Flow Graph
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int x = 42;
loop { int x = 0; x++; };
print x;

◦

int x = 42;

int x = 0;

x++;

print x;

◦
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