
Contextual Analysis

Yegor Bugayenko

Lecture #3 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=fBcQyX_wAhQ


2/19

Contextual Analysis @yegor256

Concrete vs. Abstract

Identification

Static Type Checking

AST Visitor

Decorated AST

Control Flow Graph



3/19

Contextual Analysis @yegor256

Code Understanding Pipeline



4/19

Contextual Analysis @yegor256

Lexical Analysis
Chars

Syntactical Analysis
Tokens

Interpretation
Concrete Syntax Tree (CST)

Contextual Analysis
Abstract Syntax Tree (AST)

Static Analysis
Decorated AST

Errors



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 5/19

Contextual Analysis @yegor256

Chapter #1:

Concrete vs. Abstract



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 6/19

Contextual Analysis @yegor256

The concrete syntax of a programming language is defined by a context

free grammar (CFG). The abstract syntax of an implementation is the set of

trees used to represent programs in the implementation.



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 7/19

Contextual Analysis @yegor256

Simple program:

1 PRINT "Hi," + name;
2 EXIT;

Concrete Syntax Tree:

P

L

C

PRINT

S

"Hi,"

O

+

V

name

";"

L

C

EXIT

";"

Abstract Syntax Tree:

program

print exit

plus

"Hi," name



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 8/19

Contextual Analysis @yegor256

Chapter #2:

Identification



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 9/19

Contextual Analysis @yegor256

int x;
loop { int x; x++; };
print x;

program

int x loop print

xint x ++

x

Somehow we must link different x to different places, where they are

declared, maybe with the help of "Identification Table," or by attaching

attributes to AST nodes, or both. We may want to track their indentation
levels.



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 10/19

Contextual Analysis @yegor256

Chapter #3:

Static Type Checking



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 11/19

Contextual Analysis @yegor256

Dynamically-typed languages perform type checking at runtime, while
statically typed languages perform type checking at compile time.

var x = "Sofi";
loop { var x; x++; };
print "Hello," + x;

program

x="Sofi" loop

var x ++

x

print

+

"Hello," x



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 12/19

Contextual Analysis @yegor256

Chapter #4:

AST Visitor



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 13/19

Contextual Analysis @yegor256

ANTLR4 lets us implement the following interface:

1 public interface ParseTreeListener {
2 void visitTerminal(TerminalNode var1);
3 void visitErrorNode(ErrorNode var1);
4 void enterEveryRule(ParserRuleContext var1);
5 void exitEveryRule(ParserRuleContext var1);
6 }



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 14/19

Contextual Analysis @yegor256

Then:

1 MyLexer lexer = new MyLexer(text); // Lexer
2 MyParser parser = new MyParser(
3 new CommonTokenStream(lexer) // Parser
4 );
5 MyListener lsr = new MyListener(); // ParseTreeListener
6 new ParseTreeWalker().walk(lsr, parser.program());



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 15/19

Contextual Analysis @yegor256

Chapter #5:

Decorated AST



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 16/19

Contextual Analysis @yegor256

int x;
loop { int x; x++; };
print x;

program

int x loop print

xint x ++

x

i31

i32

i32,int

i31,int



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 17/19

Contextual Analysis @yegor256

Chapter #6:

Control Flow Graph



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 18/19

Contextual Analysis @yegor256

int x = 42;
loop { int x = 0; x++; };
print x;

◦

int x = 42;

int x = 0;

x++;

print x;

◦



Trees Identification Static Type Checking AST Visitor Decorated AST CFG 19/19

Contextual Analysis @yegor256

References


