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Chapter #1:

Extended Backus-Naur Form
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In 1959, John Backus proposed a metalanguage to describe the syntax of

IAL, known today as ALGOL 58. Further development of ALGOL led to

ALGOL 60. In the committee’s 1963 report, Peter Naur called Backus’s

notation Backus normal form. Donald Knuth argued that BNF should

rather be read as Backus–Naur form, as it is “not a normal form in the

conventional sense.”

EBNF is now the way to specify formal grammars. Proposed by Niklaus

Wirth in 1977 as an alternative to BNF.

The International Organization for Standardization adopted an EBNF

Standard, ISO/IEC 14977, in 1996. However, there are many notations of

EBNF.
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This first published version looked like: <number> ::= <digit>
|<number> <digit>
<digit> ::= 0 |1 |2 |3 |4 |5 |6 |7 |8 |9
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Our language EBNF:

1 program = line { eol line };
2 line = number command arguments;
3 arguments = [ argument { "," argument } ];
4 number = digit { digit };
5 digit = "0" |$\vert$| "1" |$\vert$| "2" ... |$\vert$| "9";
6 eol = "\n";
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Chapter #2:

Lexical Analysis
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Lexical analyzer (lexer or scanner) takes input language and produces

tokens (which then can be parsed into parse tree by a parser).

Lexemes are said to be a sequence of characters in a token.
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Lexers are implemented as DFAs, which use regular expressions. For

example, this is the language:

1 10 PRINT
2 20 RENDER
3 30 EXIT
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The DFA for this language (pattern matching rules on the edges):

S 1
1-9

0-9

2
space

3
A-Z

A-Z

EOL

Integer Command

The stream of tokens (with lexems inside them) produced:

1 Integer("10"), Command("PRINT"), Integer("20"),
2 Command("RENDER"), Integer("30"), Command("EXIT").
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Some lexems (like spaces or EOLs) are ignored and do not become tokens.

They are non-token elements. However, they could become tokens, like in

this DFA:

S

1
1-9

0-9

2
space

space

1-9

3 space

A-Z

A-Z

EOL EOL

EOL

EOL spaceA-Z
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Q: What would be the stream of tokens for "10␣INPUT\n\n␣␣␣20"?
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Q: How many tokens in this C-language program?:

1 printf("age=%d", &i);
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Chapter #3:

Syntactic Analysis
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While lemmatization focuses purely on feature extraction and data

cleaning, syntactic analysis analyzes the relationship between words and

the grammatical structure of sentences.
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Top-Down and Bottom-Up Parsing

Top-down parsing builds the parse tree from the top (start symbol) down;

most top-down methods are LL. Bottom-up parsing builds the parse tree

from the leaves (terminal symbols) up; most methods are LR.
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LL means Left-to-right + Leftmost derivation.

LR means Left-to-right + Rightmost derivation.
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Predictive Parsing

A recursive descent parser is the one the checks every rule before making a

decision which one is right.

Predictive parsing is possible only for the class of LL(k) grammars, which

are the CFGs for which there exists some positive integer k that allows a

parser to decide which production rule to use by examining only the next

k tokens of input.
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Flex and Bison

These tools are called compiler-compilers (originally lex and yacc) or
parser generators.

Make this simple Flex program in foo.x:

1 %option noyywrap
2 DIGIT [0-9]
3 LETTER [a-z]
4 %%
5 {DIGIT}+ { printf( "int: %s\n", yytext ); }
6 {LETTER}+ { printf( "word: %s\n", yytext ); }
7 %%
8 int main(int argc, char** argv) { yylex(); }

Then, compile it with Flex and then with Gcc:
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1 $ flex foo.x
2 $ gcc lex.yy.c
3 $ ./a.out
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Each time the program needs a token, it calls yylex(), which reads a little

input and returns the token. When it needs another token, it calls yylex()
again. The scanner acts as a coroutine; that is, each time it returns, it

remembers where it was, and on the next call it picks up where it left off.
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The action code is what stays in the brackets after the pattern. If action
code returns, scanning resumes on the next call to yylex(); if it doesn’t
return, scanning resumes immediately.
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Lexical errors may be handled and the lexer may recover from some of

them: we don’t want the lexer to stop at the first error. See how Flex

recovers.
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This is Bison code in foo.y:

1 %token WORD
2 %token INT
3 %%
4 input: date |$\vert$| sentence;
5 date:
6 INT INT INT
7 { printf("date!\n"); };;
8 sentence:
9 |$\vert$|
10 sentence WORD
11 { printf("sentence!\n"); };
12 %%
13 int main(int argc, char** argv) {
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14 yyparse();
15 }
16 void yyerror(char *s) {
17 fprintf(stderr, "error: %s\n", s);
18 }
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We compile them together as such:

1 bison -d foo.y
2 flex foo.x
3 gcc foo.tab.c lex.yy.c

Bison generates foo.tab.h file, which we must #include into foo.x.
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ANTLR

ANTLR breaks the stream into tokens (capitalized names) and

non-terminals:

1 grammar basic;
2 program: line+;
3 line: order command tail;
4 order: INTEGER;
5 command: NAME;
6 tail: argument*;
7 INTEGER: [1-9][0-9]*;
8 NAME: [A-Z]+;
9 SPACE: (’ ’)+ { skip(); };
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