
Syntax Analysis

Yegor Bugayenko

Lecture #2 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=RTsrFG7NdvY

2/28

Syntax Analysis @yegor256

Extended Backus-Naur Form

Lexical Analysis

Syntactic Analysis

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 3/28

Syntax Analysis @yegor256

Chapter #1:

Extended Backus-Naur Form

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 4/28

Syntax Analysis @yegor256

In 1959, John Backus proposed a metalanguage to describe the syntax of

IAL, known today as ALGOL 58. Further development of ALGOL led to

ALGOL 60. In the committee’s 1963 report, Peter Naur called Backus’s

notation Backus normal form. Donald Knuth argued that BNF should

rather be read as Backus–Naur form, as it is “not a normal form in the

conventional sense.”

EBNF is now the way to specify formal grammars. Proposed by Niklaus

Wirth in 1977 as an alternative to BNF.

The International Organization for Standardization adopted an EBNF

Standard, ISO/IEC 14977, in 1996. However, there are many notations of

EBNF.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 5/28

Syntax Analysis @yegor256

This first published version looked like: <number> ::= <digit>
|<number> <digit>
<digit> ::= 0 |1 |2 |3 |4 |5 |6 |7 |8 |9

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 6/28

Syntax Analysis @yegor256

Our language EBNF:

1 program = line { eol line };
2 line = number command arguments;
3 arguments = [argument { "," argument }];
4 number = digit { digit };
5 digit = "0" |\vert| "1" |\vert| "2" ... |\vert| "9";
6 eol = "\n";

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 7/28

Syntax Analysis @yegor256

Chapter #2:

Lexical Analysis

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 8/28

Syntax Analysis @yegor256

Lexical analyzer (lexer or scanner) takes input language and produces

tokens (which then can be parsed into parse tree by a parser).

Lexemes are said to be a sequence of characters in a token.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 9/28

Syntax Analysis @yegor256

Lexers are implemented as DFAs, which use regular expressions. For

example, this is the language:

1 10 PRINT
2 20 RENDER
3 30 EXIT

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 10/28

Syntax Analysis @yegor256

The DFA for this language (pattern matching rules on the edges):

S 1
1-9

0-9

2
space

3
A-Z

A-Z

EOL

Integer Command

The stream of tokens (with lexems inside them) produced:

1 Integer("10"), Command("PRINT"), Integer("20"),
2 Command("RENDER"), Integer("30"), Command("EXIT").

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 11/28

Syntax Analysis @yegor256

Some lexems (like spaces or EOLs) are ignored and do not become tokens.

They are non-token elements. However, they could become tokens, like in

this DFA:

S

1
1-9

0-9

2
space

space

1-9

3 space

A-Z

A-Z

EOL EOL

EOL

EOL spaceA-Z

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 12/28

Syntax Analysis @yegor256

Q: What would be the stream of tokens for "10␣INPUT\n\n␣␣␣20"?

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 13/28

Syntax Analysis @yegor256

Q: How many tokens in this C-language program?:

1 printf("age=%d", &i);

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 14/28

Syntax Analysis @yegor256

Chapter #3:

Syntactic Analysis

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis 15/28

Syntax Analysis @yegor256

While lemmatization focuses purely on feature extraction and data

cleaning, syntactic analysis analyzes the relationship between words and

the grammatical structure of sentences.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

16/28

Syntax Analysis @yegor256

Top-Down and Bottom-Up Parsing

Top-down parsing builds the parse tree from the top (start symbol) down;

most top-down methods are LL. Bottom-up parsing builds the parse tree

from the leaves (terminal symbols) up; most methods are LR.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

17/28

Syntax Analysis @yegor256

LL means Left-to-right + Leftmost derivation.

LR means Left-to-right + Rightmost derivation.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

18/28

Syntax Analysis @yegor256

Predictive Parsing

A recursive descent parser is the one the checks every rule before making a

decision which one is right.

Predictive parsing is possible only for the class of LL(k) grammars, which

are the CFGs for which there exists some positive integer k that allows a

parser to decide which production rule to use by examining only the next

k tokens of input.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

19/28

Syntax Analysis @yegor256

Flex and Bison

These tools are called compiler-compilers (originally lex and yacc) or
parser generators.

Make this simple Flex program in foo.x:

1 %option noyywrap
2 DIGIT [0-9]
3 LETTER [a-z]
4 %%
5 {DIGIT}+ { printf("int: %s\n", yytext); }
6 {LETTER}+ { printf("word: %s\n", yytext); }
7 %%
8 int main(int argc, char** argv) { yylex(); }

Then, compile it with Flex and then with Gcc:

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

20/28

Syntax Analysis @yegor256

1 $ flex foo.x
2 $ gcc lex.yy.c
3 $./a.out

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

21/28

Syntax Analysis @yegor256

Each time the program needs a token, it calls yylex(), which reads a little

input and returns the token. When it needs another token, it calls yylex()
again. The scanner acts as a coroutine; that is, each time it returns, it

remembers where it was, and on the next call it picks up where it left off.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

22/28

Syntax Analysis @yegor256

The action code is what stays in the brackets after the pattern. If action
code returns, scanning resumes on the next call to yylex(); if it doesn’t
return, scanning resumes immediately.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

23/28

Syntax Analysis @yegor256

Lexical errors may be handled and the lexer may recover from some of

them: we don’t want the lexer to stop at the first error. See how Flex

recovers.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

24/28

Syntax Analysis @yegor256

This is Bison code in foo.y:

1 %token WORD
2 %token INT
3 %%
4 input: date |\vert| sentence;
5 date:
6 INT INT INT
7 { printf("date!\n"); };;
8 sentence:
9 |\vert|
10 sentence WORD
11 { printf("sentence!\n"); };
12 %%
13 int main(int argc, char** argv) {

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

25/28

Syntax Analysis @yegor256

14 yyparse();
15 }
16 void yyerror(char *s) {
17 fprintf(stderr, "error: %s\n", s);
18 }

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

26/28

Syntax Analysis @yegor256

We compile them together as such:

1 bison -d foo.y
2 flex foo.x
3 gcc foo.tab.c lex.yy.c

Bison generates foo.tab.h file, which we must #include into foo.x.

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

27/28

Syntax Analysis @yegor256

ANTLR

ANTLR breaks the stream into tokens (capitalized names) and

non-terminals:

1 grammar basic;
2 program: line+;
3 line: order command tail;
4 order: INTEGER;
5 command: NAME;
6 tail: argument*;
7 INTEGER: [1-9][0-9]*;
8 NAME: [A-Z]+;
9 SPACE: (’ ’)+ { skip(); };

Extended Backus-Naur Form Lexical Analysis Syntactic Analysis

[LL/LR Predictive CC ANTLR]

28/28

Syntax Analysis @yegor256

References

