
Formal Grammar

Yegor Bugayenko

Lecture #1 out of 10

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=rsoPqA1CYmE

2/35

Formal Grammar @yegor256

Notation

Chomsky Hierarchy

Parse Tree

Ambiguity

Non-determinism

3/35

Formal Grammar @yegor256

I promise, there will be no more

formalism than it’s necessary!

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 4/35

Formal Grammar @yegor256

Chapter #1:

Notation

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 5/35

Formal Grammar @yegor256

By the way, if a language is simple, it’s possible to do it without a

grammar, for example (we just split the text by a space):

1 PRINT 42
2 PRINT 256
3 PRINT 0

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 6/35

Formal Grammar @yegor256

A practical example: I have a project Xembly, which is using ANTLR4 for

parsing its own language:

1 XPATH "/car/price";
2 SET "$2000";
3 ATTR "time", "2023/02/01";

However, I have a task in the backlog: get rid of the grammar and use

string manipulations instead, because it’s faster.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 7/35

Formal Grammar @yegor256

A grammar is a finite set of formal rules for generating (!) syntactically

correct sentences. Pay attention to the word “formal.” A grammar may be

informal, if the rules are informal. For example:

“Commands go one after another sometimes with arguments”

This is a rule, but it is not formal and may not be understood by a

computer.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 8/35

Formal Grammar @yegor256

Assume, we want to create a new programming language (very similar to

Basic), which will allow us to write programs that look like this:

1 10 PRINT "What is your name?"
2 20 INPUT X
3 30 PRINT "Hello,", X

It’s impossible (or very hard) to parse this program by splitting strings, for

example, because of the possible commas inside the "Hello," string.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 9/35

Formal Grammar @yegor256

A formal grammar G, according to Noam Chomsky (1956), is a tuple

⟨N, T, P, S⟩, where:

•N = {Program, Line, Number, Command, Argument, . . . } (non-terminals or
variables)

• T = {10, 20, PRINT, X, ,, "Hello", . . . } (terminals or alphabet)

• P = {. . . } (production rules)

• S ∈ N (start symbol)

By the way, N ∩ T = ∅.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 10/35

Formal Grammar @yegor256

A language that can be built by G is denoted as L(G): set of all strings
that can be generated by G.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 11/35

Formal Grammar @yegor256

A production rule specifies a replacement of its left-hand side with its

right-hand side, for example:

1. Line → Number INPUT Argument

2.Number → 10

3.Number → 20

Formally, a production rule is (using Kleene star, by Stephen Kleene):

(T ∪N)∗n(T ∪N)∗ → (T ∪N)∗ n ∈ N

V ∗nV ∗ → V ∗ V = (T ∪N)

Each left-hand side must contain at least one non-terminal symbol.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 12/35

Formal Grammar @yegor256

Grammars are said to be equivalent if they produce the same language.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 13/35

Formal Grammar @yegor256

Chapter #2:

Chomsky Hierarchy

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 14/35

Formal Grammar @yegor256

There are four types in Chomsky Hierarchy of grammars:

Type-0: Unrestricted grammars

Type-1: Context-sensitive grammars

Type-2: Context-free grammars

Type-3: Regular grammars

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

15/35

Formal Grammar @yegor256

Type-0: Unrestricted Grammar

The only restriction is that α is not empty (not ϵ) in each rule:

α → β α, β ∈ N ∪ T

For every unrestricted grammar G there exists some Turing machine

capable of recognizing L(G) and vice versa.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

16/35

Formal Grammar @yegor256

The decision problem of whether a given string s can be generated by a

given unrestricted grammar is equivalent to the problem of whether it can

be accepted by the Turing machine equivalent to the grammar. The latter

problem is called the Halting problem and is undecidable.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

17/35

Formal Grammar @yegor256

Type-1: Context-Sensitive Gram
mar

A context-sensitive grammar (CSG) are “non-erasing” grammars. A

grammar is noncontracting (or monotonic) if all of its production rules are

of the form α → β where the length of α is less than or equal to that of β.

Some textbooks define CSGs as non-contracting, although this is not how

Noam Chomsky defined them in 1959.

A canonical example is {anbncn : n ≥ 1}.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

18/35

Formal Grammar @yegor256

Type-2: Context Free Grammar

A context-free grammar (CFG) is a grammar in which the left-hand side of

each production rule consists of only a single non-terminal symbol, for

example:

p1: Program → Program Line

p2: Program → ϵ

p3: Line → Integer Command Tail

p4: Tail → Tail Argument

p5: Tail → ϵ

p6: Integer → 10

p7: Integer → 20

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

19/35

Formal Grammar @yegor256

Derivation process may be described using =⇒
pi

notation:

P =⇒
p1

P L

=⇒
p3

P I C T

=⇒
p8

P 30 C T

=⇒
p?

P 30 PRINT T

=⇒
p1

P L 30 PRINT T

=⇒
p?

. . .

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

20/35

Formal Grammar @yegor256

We can say that “G derives in zero or more steps”:
∗
=⇒
G

(it is reflexive

transitive closure of =⇒
G
). For example:

P
∗
=⇒
G

P L 30 PRINT T

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

21/35

Formal Grammar @yegor256

Languages generated by context-free grammars are known as context-free
languages (CFL).

Not all languages can be generated by CFGs.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

22/35

Formal Grammar @yegor256

The language equality question (do two given context-free grammars

generate the same language?) is undecidable.

The language inclusion question is also undecidable: Given two CFGs, can

the first one generate all strings that the second one can generate?

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

23/35

Formal Grammar @yegor256

The emptiness problem (whether the grammar generates any terminal

strings at all), is undecidable for context-sensitive grammars, but decidable

for CFGs.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

24/35

Formal Grammar @yegor256

Leftmost derivation: always expands leftmost non-terminal.

There are left recursive CFGs: when non-terminals stay always on the left

side of the right-side hand of the rule. Similarly, there are right recursive
CFGs.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

25/35

Formal Grammar @yegor256

Type-3: Regular Grammar

In a regular grammar all production rules have at most one non-terminal

symbol in the rightmost or leftmost position in the rule (A and B are

non-terminals and a is a string of terminals):

A → a

A → a B (right-linear grammar)
A → B a (left-linear grammar)
A → ϵ

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

26/35

Formal Grammar @yegor256

Left-linear grammar is just another name for left-regular grammar (the

same for right-).

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

27/35

Formal Grammar @yegor256

Some textbooks and articles disallow empty rules (with ϵ).

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism

[Unrestricted CSG CFG Regular]

28/35

Formal Grammar @yegor256

A regular grammar generates exactly the language a nondeterministic

finite automaton accepts.

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 29/35

Formal Grammar @yegor256

Chapter #3:

Parse Tree

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 30/35

Formal Grammar @yegor256

A parse tree (parsing tree, derivation tree, concrete syntax tree) is an

ordered, rooted tree that represents the syntactic structure of a string

according to some CFG.

P

P L

N
C

A

30

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 31/35

Formal Grammar @yegor256

Chapter #4:

Ambiguity

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 32/35

Formal Grammar @yegor256

An ambiguous grammar is a CFG for which there exists a string that can

have more than one leftmost derivation or parse tree. For example, this

grammar:

A → B t | t B
B → t

May be parsed as two different trees:

A

B t

t

A

Bt

t

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 33/35

Formal Grammar @yegor256

Chapter #5:

Non-determinism

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 34/35

Formal Grammar @yegor256

Non-deterministic CFG:

A → B x

A → B y

A → B z

Backtracking in a parser is required in order to parse this grammar.

By using left factoring it is possible to remove non-determinism:

A → B C

C → x | y | z

Notation Chomsky Hierarchy Parse Tree Ambiguity Non-determinism 35/35

Formal Grammar @yegor256

References

