
Practical Program Analysis
Series of lectures by Yegor Bugayenko to students of Innopolis University in 2023,
and video recorded

The entire set of slide decks is in yegor256/ppa GitHub repository.

Abstract:
The course is a high-level introduction to program analysis with a strong em-
phasis on its practical implementation in the design of programming languages
and code analyzers. Students may listen to this course if they plan to develop
their own programming languages, compilers, IDEs, static and dynamic analyz-
ers, code refactoring, generating and optimization tools. The course combines
theoretical study with the development of instruments that analyze source
code and automatically modifies it.

What is the goal?
The primary objective of the course is to demonstrate how theoretical knowledge of
program analysis may be applied to the design of software tools.

Who is the teacher?
Yegor is developing software for more than 30 years, being a hands-on programmer
(see his GitHub account: @yegor256) and a manager of other programmers. At the
moment Yegor is a director of an R&D laboratory in Huawei. His primary research
focus is software quality problems. Some of the lectures he has recently presented
at some software conferences could be found at his YouTube channel. Yegor also
published a few books and wrote a blog about software engineering and object-oriented
programming. Yegor previously tought two courses in Innopolis University (Kazan,
Russia) and HSE University (Moscow, Russia): Software Systems Design and Ensuring
Quality in Software Projects (all videos are available).

Why this course?
The quality of software code that most of us programmers write is way below the expec-
tations of our customers. Two main reasons for that is a) the lack of understanding of
how programming languages are designed internally and b) the absences of connection
between theoretical knowledge about language design and the actual software we use
every day to write code: IDEs, compilers, code analyzers and modifiers.This course
may help build the bridge between theory and practice.

What’s the methodology?
The course is organized in pairs of lectures (45 minutes each). The first lecture in a pair
is an introduction of a theory, while the second lecture is a demonstration of how the
theory may be applied to the development of a software tool. Either existing GitHub
projects will be used for the demonstration or new projects will be developed on-stage.

https://www.yegor256.com
https://innopolis.university/en/
https://www.youtube.com/playlist?list=PLaIsQH4uc08wdXIC4utfgMxV_iswE9_Md
https://github.com/yegor256/ppa
https://github.com/yegor256
https://www.youtube.com/channel/UCr9qCdqXLm2SU0BIs6d_68Q
https://www.yegor256.com/books.html
https://www.yegor256.com/contents.html
https://github.com/yegor256/ssd16
https://github.com/yegor256/eqsp
https://github.com/yegor256/eqsp


Page #2 of 6

Course Structure

Prerequisites to the course (it is expected that a student knows this):

• How to write code
• How to design software

After the course a student hopefully will understand the basics of:

• Formal Grammar
• Syntax Analysis
• Abstract Syntax Tree
• Formal Semantics
• Abstract Machines
• Program Analysis
• Data Flow Analysis
• Symbolic Execution
• Model Checking

Also, a student will be able to develop:

• A Programming Language
• A Compiler
• A Static Analyzer
• A Code Refactoring Tool



Page #3 of 6

Lectures

The following topics are discussed:

1. Formal Grammar
• Notation
• Production Rules
• Parse Tree
• Ambiguity of Grammar
• Chomsky’s Four Types of Grammars
• Regular Grammar
• Context Free Grammar (CFG)
• Linear Grammars
• Precedence and Associativity
• Recursive Rules
• Leftmost and Rightmost Derivation
• Non-deterministic CFG
• Left Factoring

2. Syntax Analysis
• Extended Backus-Naur Form
• Lexical Analysis (Grammar + Lexer)
• Tokenization
• Syntactic Analysis (Parsing)
• Top-down (LL) and Bottom-up (LR) Parsing
• Flex and Bison
• ANTLR
• Off-side Rule

3. Abstract Syntax Tree
• Contextual Analysis
• Semantic Analysis
• Intermediate Language
• Control Flow Graph
• AST in XML

4. Formal Semantics
• Inference Rules, Axioms, Proof Trees
• Natural Semantics (Denotational)
• Structural Semantics (Operational)
• Reduction Semantics

5. Abstract Machines
• Turing Machine
• Finite-State Machine
• SECD Machine
• Graph-based VM



Page #4 of 6

6. Program Analysis
• Rice’s Theorem
• Static vs Dynamic Analysis
• Soundness and Completeness
• Precision and Recall
• Abstract Interpretation
• Approximation
• Lattices

7. Data Flow Analysis
• Basics Blocks, Transfer Function, and Join Operation
• Work List Approach
• Forward and Backward Analysis
• Live Variable Analysis
• Definite Assignment Analysis
• Available Expressions Analysis

8. Symbolic Execution
• Constraint Solvers (SAT/SMT)
• Itra- vs Inter-procedural Analysis
• Concolic Execution
• Path Explosion
• KLEE

9. Model Checking
• Verification vs. Validation
• Program Graph
• Transformation System
• SPIN



Page #5 of 6

Grading

Students may form groups of up to three people. Each group will present their own
public GitHub repository with a software module inside, which may be one of the
following:

• Compiler,
• Static analyzer,
• Transpiler,
• Code refactoring tool.

Higher grades will be given for (in this order):

• Higher formalism of documentation,
• Higher complexity, and
• Higher test coverage,

Attendance will be tracked at the lectures. If a student attends more than 75% of all
lectures, they will not get less than “C”.

At the laboratory classes each group will have to complete three home works and
defend them verbally on-site. A completion of less than two will give everybody in the
group a negative point, a completion of three — will give a positive point; the point
will be added to the grade given by the lecturer.

A retake exam is possible, following exactly the same procedure. However, the highest
mark possible at the retake is “C.”



Page #6 of 6

Learning Material

The following books are highly recommended to read (in no particular order):

Robert Harper, Practical Foundations for
Programming Languages

Xavier Rival et al., Introduction to Static
Analysis: An Abstract Interpretation
Perspective

Peter Linz, An Introduction to Formal
Languages and Automata

Terence Parr, The Definitive ANTLR 4
Reference

Benjamin C. Pierce, Programming Language
Foundations

Glynn Winskel, Formal Semantics of
Programming Languages

Flemming Nielson et al., Principles of
Program Analysis

Anders Møller et al., Static Program Analysis

Patrick Cousot, Principles of Abstract
Interpretation

Uday Khedker et al., Data Flow Analysis:
Theory and Practice

Christel Baier, Principles of Model Checking

It is also recommended to watch YouTube lectures of Michael Pradel. @nesoacademy,
Dmitry Soshnikov, Michael RyanClarkson, KristopherMicinski, and Joost-Pieter Katoen.

Also, check the Program Analysis course by Jonathan Aldrich and Claire Le Goues.

https://www.youtube.com/@MichaelPradel
https://www.youtube.com/@nesoacademy
https://www.youtube.com/@DmitrySoshnikov-education
https://www.youtube.com/@MichaelRyanClarkson
https://www.youtube.com/@krismicinski
https://www.youtube.com/@htz4523
http://www.cs.cmu.edu/~aldrich/courses/17-355-18sp/

