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Chapter #1:

Pre-Test
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How would you do this?

1 Message m = new Message();
2 m.setName("Sarah");
3 m.print(); // Hello, Sarah!
4

5 m.setName("Victor");
6 m.print(); // Hello, Victor!
7

8 m.setName("Leyla");
9 m.print(); // Hello, Leyla!

1 Message m1 = new Message("Sarah");
2 m1.print(); // Hello, Sarah!
3

4 Message m2 = new Message("Victor");
5 m2.print(); // Hello, Victor!
6

7 Message m3 = new Message("Leyla");
8 m3.print(); // Hello, Leyla!
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Chapter #2:

Mutability
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Which object is immutable?

1 class Book {
2 private String title;
3 Book(String t) { title = t; }
4 void setTitle(String t) {
5 this.title = t;
6 }
7 String getTitle() {
8 return this.title;
9 }
10 }
11 b = new Book();
12 b.setTitle("Object Thinking");

1 class Book {
2 private final String title;
3 Book(String t) { title = t; }
4 void withTitle(String t) {
5 return new Book(t);
6 }
7 String getTitle() {
8 return this.title;
9 }
10 }
11 b1 = new Book();
12 b2 = b1.withTitle("Object Thinking");
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There are four gradients of immutability

I. Constant

II. Not a Constant

III. Represented Mutability

IV. Encapsulated Mutability

You may read my blog about this [Bugayenko, 2016].
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Gradient I: Constant

1 class Book {
2 private final String t;
3 Book(String t) { this.t = t; }
4 String title() {
5 return this.t;
6 }
7 }

1 Book b = new Book("Object Thinking");
2 String t1 = b.title();
3 String t2 = b.title()

The title() method returns exactly the

same data on each call. This object is

definitely immutable.
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Gradient II: Not a Constant

1 class Book {
2 private final String t;
3 Book(String t) { this.t = t; }
4 String title() {
5 return String.format(
6 "%s / %s", title, return new Date()
7 );
8 }
9 }

1 Book b = new Book("Object Thinking");
2 String t1 = b.title();
3 String t2 = b.title()

The title() method returns different data

on each new call, depending on system timer.

Does it make the object mutable or not?
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Gradient III: Represented Mutability

1 class Book {
2 private final Path path;
3 Book(Path p) { this.path = p; }
4 Book rename(String title) {
5 Files.write(
6 this.path,
7 title.getBytes(),
8 StandardOpenOption.CREATE
9 );
10 return this;
11 }
12 String title() {
13 return new String(
14 Files.readAllBytes(this.path)
15 );
16 }
17 }

1 Book b = new Book("Object Thinking");
2 String t1 = b.title();
3 b.rename("Elegant Objects");
4 String t2 = b.title()

The title() method returns different data

on each new call, depending on the content of

the file in the file system. Does it make the

object mutable or not?
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Gradient IV: Encapsulated Mutability

1 class Book {
2 private final StringBuffer buffer;
3 Book rename(String t) {
4 this.buffer.setLength(0);
5 this.buffer.append(t);
6 return this;
7 }
8 String title() {
9 return this.buffer.toString();
10 }
11 }

1 Book b = new Book("Object Thinking");
2 String t1 = b.title();
3 b.rename("Elegant Objects");
4 String t2 = b.title()

The title() method returns different data

on each new call, depending on the content of

the memory block. Does it make the object

mutable or not?



Pre-Test Mutability Problems ORM Apache Performance
[ Definition Gradients Constant NotConstant Represented Encapsulated ]

12/35

Setters @yegor256

Only gradients III and IV cause problems,

while “Constant” and “Not a Constant”

objects are harmless.

You may want to read my blog about immutability [Bugayenko, 2014a,e,d,b].
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Chapter #3:

Drawbacks of Mutability
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“Immutable classes are easier to design, implement,

and use than mutable classes. They are less prone to

error and are more secure.”

— Joshua Bloch. Effective Java. Prentice Hall PTR, 2008. doi:10.5555/1377533

https://doi.org/10.5555/1377533
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Steve Freeman

“Writing large-scale functional programs is a topic

for a different book, but we find that a little

immutability within the implementation of a class

leads to much safer code and that, if we do a good

job, the code reads well too.”

— Steve Freeman and Nat Pryce. Growing Object-Oriented Software, Guided by
Tests. Pearson Education, 2009. doi:10.5555/1655852

https://doi.org/10.5555/1655852
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1) Side effects

With a side effect:

1 public String post(Request request) {
2 request.setMethod("POST");
3 return request.fetch();
4 }
5

6 r = new Request("x.com");
7 r.setMethod("GET");
8 String first = this.post(r);
9

10 String second = r.fetch();

Without a side effect:

1 public String post(Request request) {
2 return request
3 .withMtd("POST")
4 .fetch();
5 }
6

7 r = new Request("x.com").withMtd("GET");
8 String first = this.post(r);
9

10 String second = r.fetch();



Pre-Test Mutability Problems ORM Apache Performance
[ Side-effects Concurrency Coupling Identity ]

17/35

Setters @yegor256

2) Thread (un-)safety

1 class Books {
2 private int c = 0;
3 void add() {
4 this.c = this.c + 1;
5 }
6 }

Goetz [2006] explained the

advantages of immutable objects in

more details in their very famous

book “Java Concurrency in

Practice” (highly recommended!)

1 ExecutorService e =
2 Executors.newCachedThreadPool();
3 final Books books = new Books();
4 for (int i = 0; i < 1000; i++) {
5 e.execute(
6 new Thread(
7 () -> {
8 books.add();
9 }
10 )
11 );
12 }
13 // What is the value of "books.c"?
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3) Temporal Coupling

1 r = new Request("x.com");
2 r.setMethod("POST");
3 String first = r.fetch();
4 r.setBody("text=hello");
5 String second = r.fetch();

1 r = new Request("x.com");
2

3 // 100 lines later:
4 // r.setMethod("POST");
5 // String first = r.fetch();
6

7 r.setBody("text=hello");
8 String second = r.fetch();

“Sequential coupling (also known as temporal coupling) is a form of

coupling where a class requires its methods to be called in a particular

sequence.” — Wikipedia.

https://en.wikipedia.org/wiki/Sequential_coupling
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“Side effects are lies. Your function promises to do

one thing, but it also does other hidden things. They

are devious and damaging mistruths that often

result in strange temporal couplings and order

dependencies.”

— Robert C. Martin. Clean Code: A Handbook of Agile Software Craftsmanship.
Pearson Education, 2008. doi:10.5555/1388398

https://doi.org/10.5555/1388398
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“Sequential cohesion (considered to be less than

ideal) exists when a routine contains operations that

must be performed in a specific order, that share

data from step to step, and that don’t make up a

complete function when done together.”

— Steve McConnell. Software Project Survival Guide. Microsoft Press, 1998.
doi:10.5555/270015

https://doi.org/10.5555/270015
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“Back in the early days of programming, this was

named temporal coupling, and it is a pretty nasty

thing when you do it excessively. When you group

things together just because they have to happen at

the same time, the relationship between them isn’t

very strong. Later you might find that you have to

do one of those things without the other, but at that

point they might have grown together. Without a

seam, separating them can be hard work.”

— Michael Feathers. Working Effectively With Legacy Code. Prentice Hall
Professional, 2004. doi:10.5555/1050933

https://doi.org/10.5555/1050933
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4) Identity Mutability

1 Map<Date, String> map = new HashMap<>();
2 Date date = new Date();
3 map.put(date, "hello, world!");
4

5 // This is TRUE:
6 assert map.containsKey(date);
7

8 date.setTime(12345L);
9 // Why this is FALSE??:
10 assert map.containsKey(date);

“In order for an object to be shared safely, it

must be immutable: it cannot be changed

except by full replacement.”

Source: Eric Evans. Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison-Wesley Professional, 2004.

doi:10.5555/861502

https://doi.org/10.5555/861502
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“As long as a value object is immutable, change

management is simple—there isn’t any change

except full replacement. Immutable objects can be

freely shared.”

— Eric Evans. Domain-Driven Design: Tackling Complexity in the Heart of
Software. Addison-Wesley Professional, 2004. doi:10.5555/861502

https://doi.org/10.5555/861502
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Chapter #4:
ORM
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ORM stands for “Object Relational

Mapping,” which is an attempt to

represent a relational data model in

objects and relations between them, such

as attributes, methods, and inheritance

You may want to read my blog about ORM [Bugayenko, 2014c].
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“One of the first and most easily-recognizable

problems in using objects as a front-end to a

relational data store is that of how to map classes to

tables.”

— Ted Neward. The Vietnam of Computer Science.
https://web.archive.org/web/20220823105749/http:
//blogs.tedneward.com/post/the-vietnam-of-computer-science/, jun
2006. [Online; accessed 19-09-2024]

https://web.archive.org/web/20220823105749/http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
https://web.archive.org/web/20220823105749/http://blogs.tedneward.com/post/the-vietnam-of-computer-science/
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Java Persistence API

1 @Entity
2 @Table(name = "movie")
3 public class Movie {
4 @Id
5 private Long id;
6 private String name;
7 private Integer year;
8 // ctors
9 // getters
10 // setters
11 }

1 EntityManager em = getEntityManager();
2 em.getTransaction().begin();
3 Movie movie = em.findById(1L);
4 movie.setName("The Godfather");
5 em.persist(movie);
6 em.getTransaction().commit();



Pre-Test Mutability Problems ORM Apache Performance
[ JPA SQL-speaking JOINs ]

28/35

Setters @yegor256

SQL speaking objects

1 interface Movie {
2 int id();
3 String title();
4 String author();
5 }
6 Movie m = new PgMovie(ds, 1L);
7 m.rename("The Godfather");

Here I’m using jcabi-jdbc, an object-oriented

wrapper around JDBC data source.

1 final class PgMovie implements Movie
2 private final Source dbase;
3 private final int number;
4 public PgMovie(DataSource data, int id)
5 this.dbase = data;
6 this.number = id;
7 public String title()
8 return new JdbcSession(this.dbase)
9 .sql("SELECT title FROM movie WHERE id = ?")
10 .set(this.number)
11 .select(new SingleOutcome<String>(String.class));
12 public void rename(String n)
13 new JdbcSession(this.dbase)
14 .sql("UPDATE movie SET name = ? WHERE id = ?")
15 .set(n)
16 .set(this.number)
17 .execute();

https://github.com/jcabi/jcabi-jdbc
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Complex SQL queries

1 final class PgMovies
2 private final Source dbase;
3 public PgMovies(DataSource data)
4 this.dbase = data;
5 public Movie movie(Long id)
6 return new PgMovie(this.dbase, id);

1 final class PgMovie implements Movie
2 private final Source dbase;
3 private final int number;
4 public PgMovie(DataSource data, int id)
5 this.dbase = data;
6 this.number = id;
7 public String title()
8 return new JdbcSession(this.dbase)
9 .sql("SELECT title FROM movie WHERE id = ?")
10 .set(this.number)
11 .select(new SingleOutcome<String>(String.class));
12 public String author()
13 return new JdbcSession(this.dbase)
14 .sql("SELECT name FROM movie JOIN author ON

author.id = movie.author WHERE movie.id = ?")
15 .set(this.number)
16 .select(new SingleOutcome<String>(String.class));
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org.apache.commons.mail.Email

1 public abstract class Email {
2 protected MimeMessage message;
3 protected String charset;
4 protected InternetAddress fromAddress;
5 protected String subject;
6 protected MimeMultipart emailBody;
7 protected Object content;
8 protected String contentType;
9 protected boolean debug;
10 protected Date sentDate;
11 protected Authenticator authenticator;
12 protected String hostName;
13 protected String smtpPort;
14 protected String sslSmtpPort;
15 protected List<InternetAddress> toList;
16 protected List<InternetAddress> ccList;
17 protected List<InternetAddress> bccList;
18 protected List<InternetAddress> replyList;

19 protected String bounceAddress;
20 protected Map<String, String> headers;
21 protected boolean popBeforeSmtp;
22 protected String popHost;
23 protected String popUsername;
24 protected String popPassword;
25 protected boolean tls;
26 protected boolean ssl;
27 protected int socketTimeout;
28 protected int socketConnectionTimeout;
29 private boolean startTlsEnabled;
30 private boolean startTlsRequired;
31 private boolean sslOnConnect;
32 private boolean sslCheckServerIdentity;
33 private boolean sendPartial;
34 private Session session;
35 }

https://github.com/apache/commons-email/blob/EMAIL_1_5/src/main/java/org/apache/commons/mail/Email.java

https://github.com/apache/commons-email/blob/EMAIL_1_5/src/main/java/org/apache/commons/mail/Email.java
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Chapter #6:

What About Performance?
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Zoran Budimlić

“Although Java implementations have been made

great strides, they still fall short on programs that

use the full power of Java’s object-oriented features.

Ideally, future compiler technologies will be able to

automatically transform the [OO style code] into

something that approaches the [procedural style] in

performance.”

— Zoran Budimlić, Ken Kennedy, and Jeff Piper. The Cost of Being
Object-Oriented: A Preliminary Study. Scientific Programming, 7(2):87–95, 1999.
doi:10.1155/1999/464598

https://doi.org/10.1155/1999/464598
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