
Getters

Yegor Bugayenko

Lecture #3 out of 8

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=2YyVmIQQ23w

2/22

Getters @yegor256

What is a Getter?

Encapsulation

The Alternative

Definition Encapsulation Alternative 3/22

Getters @yegor256

Chapter #1:

What is a Getter?

Definition Encapsulation Alternative 4/22

Getters @yegor256

“If a class is accessible outside the confines of its

package, the prudent programmer will provide

accessor methods to preserve the flexibility to

change the class’s internal representation.”

— Joshua Bloch. Effective Java. Prentice Hall PTR, 2008. doi:10.5555/1377533

https://doi.org/10.5555/1377533

Definition Encapsulation Alternative 5/22

Getters @yegor256

“Because such classes are accessed

by their data fields, they do not

offer the benefits of encapsulation.

You cannot change the

representation of such a class

without changing its API, enforce

any invariants, and take any

auxiliary action when a field is

modified. [...] such classes are

anathema and should always be

replaced by classes with private

fields and public accessor methods.”

Source: Joshua Bloch. Effective Java. Prentice Hall
PTR, 2008. doi:10.5555/1377533

https://doi.org/10.5555/1377533

Definition Encapsulation Alternative
[What? Boilerplate Purpose DTO]

6/22

Getters @yegor256

Which one is a getter?

1 class MiddleSquare {
2 private short seed;
3 MiddleSquare(short s) { seed = s; }
4

5 short getNextNumber() {
6 int s = (int) seed * seed;
7 seed = (short) (s >> 8);
8 return seed;
9 }
10 }

1 class MiddleSquare {
2 private short seed;
3 MiddleSquare(short s) { seed = s; }
4

5 short getSeed() {
6 return this.seed;
7 }
8 }

Definition Encapsulation Alternative
[What? Boilerplate Purpose DTO]

7/22

Getters @yegor256

Boilerplate getters

1 class Document
2 def initialize(n)
3 @name = n
4 end
5 def name
6 @name
7 end
8 end
9 d = Document.new("/tmp/test.txt")
10 puts d.name

1 class Document
2 attr_reader :name
3 def initialize(n)
4 @name = n
5 end
6 end
7

8 d = Document.new("/tmp/test.txt")
9 puts d.name

Some modern programming languages (e.g. Ruby) offer an ability to

generate the boilerplate for mutators and accessors in a single line.

Definition Encapsulation Alternative
[What? Boilerplate Purpose DTO]

8/22

Getters @yegor256

What getters are for?

This is what GPT-4 replied to my question: “Why should we use getters in

Java instead of making class fields public? What are the benefits?”

Definition Encapsulation Alternative
[What? Boilerplate Purpose DTO]

9/22

Getters @yegor256

Data Transfer Objects (DTO)

1 class BookDTO {
2 private int id;
3 private String author;
4 private String title;
5 BookDTO(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 int getId() { return id; }
8 String getAuthor() { return author; }
9 String getTitle() { return title; }
10 }

1 class JsonApi {
2 BookDTO getById(int id) { /* ... */ }
3 }
4

5 BookDTO dto = api.getById(42);
6

7 print(dto.getTitle());
8 print(dto.getAuthor());

There is no excuse for the use of DTO [Bugayenko, 2016b]. Almost...

Definition Encapsulation Alternative 10/22

Getters @yegor256

Chapter #2:

Encapsulation

Definition Encapsulation Alternative 11/22

Getters @yegor256

“Encapsulation is most often achieved through

information hiding, which is the process of hiding all

the secrets of an object that do not contribute to its

essential characteristics; typically, the structure of

an object is hidden, as well as the implementation of

its methods... Encapsulation provides explicit

barriers among different abstractions and thus leads

to a clear separation of concerns.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

https://doi.org/10.5555/1407387

Definition Encapsulation Alternative 12/22

Getters @yegor256

“In most ways, encapsulation is a discipline more

than a real barrier; seldom is the integrity of an

object protected in any absolute sense, and this is

especially true of software objects, so it is up to the

user of an object to respect that object’s

encapsulation.”

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

https://doi.org/10.5555/984130

Definition Encapsulation Alternative
[Integrity Semantic]

13/22

Getters @yegor256

Who is protecting the integrity better?

1 class User {
2 private String name;
3 User(String n) { name = n; }
4 int getName() {
5 return this.name;
6 }
7 }
8 if (employees.contains(user.getName())) {
9 /* pay a salary */
10 }

1 class User {
2 private String name;
3 User(String n) { name = n; }
4 bool isEmployee() {
5 return employees.contains(this.name);
6 }
7 }
8 if (user.isEmployee()) {
9 /* pay a salary */
10 }

Which class hides its data better?

Definition Encapsulation Alternative
[Integrity Semantic]

14/22

Getters @yegor256

Who knows about data semantic?

1 class Box {
2 private int weight;
3 Box(int kg) { weight = kg; }
4 int getWeight() {
5 return this.weight;
6 }
7 }
8 int w = box.getWeight();
9 int lbs = w / 0.454;
10 printf("The weight is \%d lbs\n");

1 class Box {
2 private int weight;
3 Box(int kg) { weight = kg; }
4 int getLbs() {
5 return this.weight / 0.454;
6 }
7 }
8 int lbs = box.getLbs();
9 printf("The weight is \%d lbs\n");

What happens if the Box decides to store the weight in pounds instead

of kilograms? How will it know how many of its clients still assume that

the weight is in kilograms? [Bugayenko, 2014]

Definition Encapsulation Alternative 15/22

Getters @yegor256

Chapter #3:

The Alternative

Definition Encapsulation Alternative 16/22

Getters @yegor256

“Tell-Don’t-Ask principle: Rather than asking an

object for data and acting on that data, we should

instead tell an object what to do. This encourages to

move behavior into an object to go with the data.”

— Martin Fowler. TellDontAsk.
https://martinfowler.com/bliki/TellDontAsk.html, sep 2013. [Online;
accessed 12-09-2024]

https://martinfowler.com/bliki/TellDontAsk.html

Definition Encapsulation Alternative 17/22

Getters @yegor256

“One of the fundamental principles

of object-oriented design is to

combine data and behavior, so that

the basic elements of our system

(objects) combine both together.

This is often a good thing because

this data and the behavior that

manipulates them are tightly

coupled.”

Source: Martin Fowler. TellDontAsk. https:
//martinfowler.com/bliki/TellDontAsk.html,
sep 2013. [Online; accessed 12-09-2024]

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

18/22

Getters @yegor256

1) Tell Don’t Ask, an Example

1 class BookDTO {
2 private int id;
3 private String author;
4 private String title;
5 BookDTO(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 void print() { /* ... */ }
8 }

1 class JsonApi {
2 BookDTO getById(int id) { /* ... */ }
3 }
4

5 BookDTO dto = api.getById(42);
6 dto.print();

The print() method may also be called a “printer” [Bugayenko, 2016a].

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

19/22

Getters @yegor256

“Though getter/setter methods are commonplace in

Java, they are not particularly object-oriented. In

fact, they can damage your code’s maintainability.

Moreover, the presence of numerous getter and

setter methods is a red flag that the program isn’t

necessarily well designed from an OO perspective.”

— Allen Holub. Why Getter and Setter Methods Are Evil.
https://www.infoworld.com/article/2161183/
why-getter-and-setter-methods-are-evil.html, sep 2003. [Online;
accessed 12-09-2024]

https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

20/22

Getters @yegor256

2) Get rid of the “get” prefix

1 class Book {
2 private int id;
3 private String author;
4 private String title;
5 Book(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 int id() { return id; }
8 String author() { return author; }
9 String title() { return title; }
10 }

1 class JsonApi {
2 Book getById(int id) { /* ... */ }
3 }
4

5 Book book = api.getById(42);
6

7 print(book.author());
8 print(book.title());

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

21/22

Getters @yegor256

3) Make fields public

1 class Book {
2 public final int id;
3 public final String author;
4 public final String title;
5 Book(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 }

1 class JsonApi {
2 Book getById(int id) { /* ... */ }
3 }
4

5 Book book = api.getById(42);
6

7 print(book.author);
8 print(book.title);

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

22/22

Getters @yegor256

References
Joshua Bloch. Effective Java. Prentice Hall PTR, 2008.

doi:10.5555/1377533.

Grady Booch, Robert A. Maksimchuk, Michael W.

Engle, Bobbi J. Young, Jim Connallen, and Kelli A.

Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.

doi:10.5555/1407387.

Yegor Bugayenko. Getters/Setters. Evil. Period.

https://www.yegor256.com/140916.html, sep
2014. [Online; accessed 08-07-2024].

Yegor Bugayenko. Printers Instead of Getters.

https://www.yegor256.com/160405.html, apr

2016a. [Online; accessed 08-07-2024].

Yegor Bugayenko. Data Transfer Object Is a Shame.

https://www.yegor256.com/160706.html, jul
2016b. [Online; accessed 08-07-2024].

Martin Fowler. TellDontAsk. https://
martinfowler.com/bliki/TellDontAsk.html,
sep 2013. [Online; accessed 12-09-2024].

Allen Holub. Why Getter and Setter Methods Are

Evil. https:
//www.infoworld.com/article/2161183/
why-getter-and-setter-methods-are-evil.
html, sep 2003. [Online; accessed 12-09-2024].

David West. Object Thinking. Pearson Education,

2004. doi:10.5555/984130.

https://doi.org/10.5555/1377533
https://doi.org/10.5555/1407387
https://www.yegor256.com/140916.html
https://www.yegor256.com/160405.html
https://www.yegor256.com/160706.html
https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://doi.org/10.5555/984130

