YEGOR BUGAYENKO

Lecture #3 out of 8
80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=2YyVmIQQ23w

2/22

What is a Getter?
Encapsulation

The Alternative

Getters Qyegor256

Definition Encapsulation Alternative 3/22

Chapter #1:

What is a Getter?

Getters Qyegor256

Definition Encapsulation Alternative 4/22

A
Joshua Bloch we %
Java 9

Effective java

Third Edition

“If a class is accessible outside the confines of its
package, the prudent programmer will provide
accessor methods to preserve the flexibility to
change the class’s internal representation.”

— Joshua Bloch. Effective Java. Prentice Hall PTR, 2008. d0i:10.5555/1377533

Getters Qyegor256

https://doi.org/10.5555/1377533

Definition

Getters

Encapsulation Alternative

// Degenerate classes like this should not be public!
class Point {

public float x;

public float y;
}

// Encapsulated structure class
class Point {

private float x;

private float y;

public Point (float x, fleoat y) {
this.x X;
this.y yi

}

public float getX()
public float getY ()

return x; }
return y; }

{
{

I
<X

public void setX(flecat x) { this.x
public void setY(float y) { this.y

5/22

“Because such classes are accessed
by their data fields, they do not
offer the benefits of encapsulation.
You cannot change the
representation of such a class
without changing its API, enforce
any invariants, and take any
auxiliary action when a field is
modified. [...] such classes are
anathema and should always be
replaced by classes with private
fields and public accessor methods.”

Source: Joshua Bloch. Effective Java. Prentice Hall
PTR, 2008. doi:10.5555/1377533

Qyegor256

https://doi.org/10.5555/1377533

Definition Encapsulation Alternative 6/22
[What? Boilerplate Purpose DTO]

Which one is a getter?

1|class MiddleSquare A i1|class MiddleSquare A

| private short seed; >| private short seed;

;| MiddleSquare(short s) { seed = s; } ;| MiddleSquare(short s) { seed = s; }
4 4

5| short getNextNumber() { s| short getSeed() {

6 int s = (int) seed * seed; 6 return this.seed;

7 seed = (short) (s >> 8); 7|

s return seed; 8|t

o F

10 }

Getters Qyegor256

Definition Encapsulation Alternative
[What? Boilerplate Purpose DTO]

Boilerplate getters

1|class Document
> def initialize(n)

3 Oname = n
4| end

5| def name

6 Oname

71 end

s lend

9|d = Document.new("/tmp/test.txt")
0 |puts d.name

/22

class Document
attr_reader :name
def initialize(n)
Oname = n
end
end

d = Document.new("/tmp/test.txt")
puts d.name

Some modern programming languages (e.g. Ruby) offer an ability to
generate the boilerplate for mutators and accessors in a single line.

Getters

Qyegor256

Definition Encapsulation Alternative

[What? Boilerplate Purpose DTO]

What getters are for?

Getters

Using getters in Java, rather than directly accessing fields, has several benefits:

1. Encapsulation: Getters and setters are fundamental to the object-oriented programming
principle of encapsulation, also known as data hiding. This is the practice of keeping fields
within a class private, then providing access to them via public methods (getters for read
access and setters for write access). This means that the inner workings of the class can be
hidden from outside classes.

2. Validation: By using setters, you can add validation logic before setting a value. This way,
you can control what data gets set. For instance, if you have a “setAge* method, you can
check if the age is not negative before setting the value. Directly exposing the age field
could allow someone to set a negative age, which might not be appropriate.

3. Flexibility & Maintenance: When afield is accessed directly, you're tied to the field itself. If
the field is removed or the type is changed, every access needs to be updated. By using
getters and setters, you can remove a field and compute the value from other fields, or
change the type and update the getter and setter, without any other code needing to be
changed.

4. Control over Field's Mutability: Making class fields public exposes them to outside
modification, which can lead to data inconsistency. Getters and setters help to maintain

field's immutability by returning a defensive copy of the object (when the object is mutable)

thereby preserving data consistency.

This is what GPT-4 replied to my question: “Why should we use getters in

5. Ease of Debugging: If a field value is incorrect, it's easier to find out where the value was set
if it's done through a setter, because you can add a breakpoint or logging in the setter. If

fields are public, the incorrect value could be set from anywhere.

6. Abstraction: Getters and setters allow the class to change how the data is stored internally

without affecting any classes that use it. For example, you might start with a simple class
that just stores a value, but later you might store that value in a database. If you used public
fields, you'd need to change all the classes that use it. But if you used getters and setters,
you can just change them and the rest of your code remains unaffected.

7. Enabling JavaBeans conventions: JavaBeans are classes that encapsulate many objects
into a single object (the bean). They are serializable, have a no-argument constructor, and
allow access to properties using getter and setter methods. By following these conventions,
your classes can interact with a lot of frameworks and libraries which expect these

conventions.

Remember, while these are general best practices, there can be exceptions depending on
the context. For example, in certain situations like data classes used for data transfer,
directly accessible fields might be acceptable. As with all design decisions, the right

approach depends on the specific needs of your project.

Java instead of making class fields public? What are the benefits?”

8/22

Qyegor256

Definition Encapsulation Alternative 9/22

[What? Boilerplate Purpose DTO |

Data Transfer Objects (DTO)

1/class BookDTO { 1|class JsonApi {

| private int id; | BookDTO getById(int id) { /x ... %/ }
;| private String author; 3|}

4| private String title; 4

5| BookDTO(int i, String a, String t) 5 |BookDTO dto = api.getByld(42);

6 { id = 1i; author = a; title = t; } 6

7| int getId() { return id; } 7|print (dto.getTitle());

s| String getAuthor() { return author; } s |print (dto.getAuthor());

o| String getTitle() { return title; }

10 }

There is no excuse for the use of DTO [Bugayenko, 2016b]. Almost...

Getters Qyegor256

Definition Encapsulation Alternative 10/22

Chapter #2:

Encapsulation

Getters Qyegor256

Definition Encapsulation Alternative 11/22

18] NTED
() BIECT-ORIE!
ANALYSIS AND DESIGN
WITH APPLICATIONS

ON

s P
t RUNBALGH

e g

Getters

“Encapsulation is most often achieved through
information hiding, which is the process of hiding all
the secrets of an object that do not contribute to its
essential characteristics; typically, the structure of
an object is hidden, as well as the implementation of

its methods... Encapsulation provides explicit
barriers among different abstractions and thus leads
to a clear separation of concerns.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

Qyegor256

https://doi.org/10.5555/1407387

Definition Encapsulation Alternative 12/22

“In most ways, encapsulation is a discipline more
than a real barrier; seldom is the integrity of an
object protected in any absolute sense, and this is
especially true of software objects, so it is up to the
user of an object to respect that object’s
encapsulation.”

Object Thinking

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

Getters Qyegor256

https://doi.org/10.5555/984130

Definition Encapsulation Alternative 13/22

[Integrity Semantic]

Who is protecting the integrity better?

i|class User { i|class User {

2| private String name; 2| private String name;

;| User(String n) { name = n; } ;| User(String n) { name = n; }

4| int getName() { +| bool isEmployee() {

5 return this.name; 5 return employees.contains(this.name);
6| s|

7 } 7 }

s|1f (employees.contains(user.getName())) { s|if (user.isEmployee()) {

o| /% pay a salary */ o| /* pay a salary */

10 } 10 }

Which class hides its data better?

Getters Qyegor256

Definition Encapsulation Alternative 14/22

[Integrity Semantic]

Who knows about data semantic?

1|class Box { 1|class Box {

»| private int weight; >| private int weight;

;| Box(int kg) { weight = kg; } ;| Box(int kg) { weight = kg; }

4| int getWeight() A +| int getlbs() {

5 return this.weight; 5 return this.weight / 0.454;

6| 6|

7|} 7|}

s|int w = box.getWeight () ; s|int 1lbs = box.getLbs();

olint 1bs = w / 0.454; o|printf ("The weight is \%d lbs\n");
o|printf ("The weight is \%d lbs\n");

What happens if the Box decides to store the weight in pounds instead
of kilograms? How will it know how many of its clients still assume that
the weight is in kilograms? [Bugayenko, 2014]

Getters Qyegor256

Definition Encapsulation Alternative 15/22

Chapter #3:

The Alternative

Getters Qyegor256

Definition Encapsulation Alternative 16/22

“Tell-Don’t-Ask principle: Rather than asking an
object for data and acting on that data, we should
instead tell an object what to do. This encourages to
move behavior into an object to go with the data.”

— Martin Fowler. TellDontAsk.
- https://martinfowler.com/bliki/TellDontAsk.html, sep 2013. [Online;
S0l accessed 12-09-2024]

Getters Qyegor256

https://martinfowler.com/bliki/TellDontAsk.html

Definition Encapsulation Alternative

logic

o8 58

logic

Getters

data
data

data

data
data

data

17/22

“One of the fundamental principles
of object-oriented design is to
combine data and behavior, so that
the basic elements of our system
(objects) combine both together.
This is often a good thing because
this data and the behavior that
manipulates them are tightly
coupled.”

Source: Martin Fowler. TellDontAsk. https:
//martinfowler.com/bliki/TellDontAsk.html,
sep 2013. [Online; accessed 12-09-2024]

Qyegor256

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html

Definition Encapsulation Alternative 18/22
[TellDontAsk NoPrefix Public]

1) Tell Don’t Ask, an Example

i1/class BookDTO { i1|class JsonApi {

| private int id; | BookDTO getById(int id) { /* ... %/ }
;| private String author; 3|}

4| private String title; 4

5| BookDTO(int i, String a, String t) 5 |BookDTO dto = api.getByld(42);

6 { id = 1i; author = a; title = t; } ¢|dto.print () ;

7 void print() { /x ... %/ }

8|}

The iprint () method may also be called a “printer” [Bugayenko, 2016a].

Getters Qyegor256

Definition Encapsulation Alternative 19/22
[TellDontAsk NoPrefix Public]

“Though getter/setter methods are commonplace in
Java, they are not particularly object-oriented. In
fact, they can damage your code’s maintainability.
Moreover, the presence of numerous getter and
setter methods is a red flag that the program isn’t
necessarily well designed from an OO perspective.”

— Allen Holub. Why Getter and Setter Methods Are Evil.
https://www.infoworld.com/article/2161183/

why-getter-and-setter-methods-are-evil.html, sep 2003. [Online;
accessed 12-09-2024]

Getters

Qyegor256

https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html

Definition Encapsulation Alternative 20/22
[TellDontAsk NoPrefix Public]

2) Get rid of the “get” prefix

1|class Book { 1|class JsonApi {

»| private int id; | Book getById(int id) { /* ... */ }
;| private String author; 3|}

4| private String title; 4

5| Book(int i, String a, String t) s |Book book = api.getByld(42);

6 { id = i; author = a; title = t; } 6

71 int id() { return id; } 7|print (book.author()) ;

s| String author() { return author; } s|print (book.title());

o| String title() { return title; }

10|}

Getters Qyegor256

Definition Encapsulation Alternative 21/22
[TellDontAsk NoPrefix Public]

3) Make fields public

1|class Book A 1|class JsonApi {
| public final int id; | Book getById(int id) { /* ... */ }
;| public final String author; 3|}
4| public final String title; 4
5| Book(int i, String a, String t) s |Book book = api.getByld(42);
6 { id = i; author = a; title = t; } 6
7|} 7|print (book.author) ;
s |print (book.title) ;

Getters Qyegor256

Definition Encapsulation Alternative
[TellDontAsk NoPrefix Public]

Getters

References

Joshua Bloch. Effective Java. Prentice Hall PTR, 2008.

doi:10.5555/1377533.
Grady Booch, Robert A. Maksimchuk, Michael W.

Engle, Bobbi J. Young, Jim Connallen, and Kelli A.

Houston. Object-Oriented Analysis and Design
With Applications. Addison-Wesley, 1994.
doi:10.5555/1407387.

Yegor Bugayenko. Getters/Setters. Evil. Period.
https://www.yegor256.com/140916.html, sep
2014. [Online; accessed 08-07-2024].

Yegor Bugayenko. Printers Instead of Getters.
https://www.yegor256.com/160405.html, apr

22/22

2016a. [Online; accessed 08-07-2024].

Yegor Bugayenko. Data Transfer Object Is a Shame.
https://www.yegor256.com/160706.html, jul
2016b. [Online; accessed 08-07-2024].

Martin Fowler. TellDontAsk. https://
martinfowler.com/bliki/TellDontAsk.html,
sep 2013. [Online; accessed 12-09-2024].

Allen Holub. Why Getter and Setter Methods Are

Evil. https:
//www.infoworld.com/article/2161183/
why-getter-and-setter-methods-are-evil.
html, sep 2003. [Online; accessed 12-09-2024].

David West. Object Thinking. Pearson Education,
2004. doi:10.5555/984130.

Qyegor256

https://doi.org/10.5555/1377533
https://doi.org/10.5555/1407387
https://www.yegor256.com/140916.html
https://www.yegor256.com/160405.html
https://www.yegor256.com/160706.html
https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://doi.org/10.5555/984130

