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Chapter #1:

What is a Getter?
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“If a class is accessible outside the confines of its

package, the prudent programmer will provide

accessor methods to preserve the flexibility to

change the class’s internal representation.”

— Joshua Bloch. Effective Java. Prentice Hall PTR, 2008. doi:10.5555/1377533

https://doi.org/10.5555/1377533
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“Because such classes are accessed

by their data fields, they do not

offer the benefits of encapsulation.

You cannot change the

representation of such a class

without changing its API, enforce

any invariants, and take any

auxiliary action when a field is

modified. [...] such classes are

anathema and should always be

replaced by classes with private

fields and public accessor methods.”

Source: Joshua Bloch. Effective Java. Prentice Hall
PTR, 2008. doi:10.5555/1377533

https://doi.org/10.5555/1377533
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Which one is a getter?

1 class MiddleSquare {
2 private short seed;
3 MiddleSquare(short s) { seed = s; }
4

5 short getNextNumber() {
6 int s = (int) seed * seed;
7 seed = (short) (s >> 8);
8 return seed;
9 }
10 }

1 class MiddleSquare {
2 private short seed;
3 MiddleSquare(short s) { seed = s; }
4

5 short getSeed() {
6 return this.seed;
7 }
8 }
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Boilerplate getters

1 class Document
2 def initialize(n)
3 @name = n
4 end
5 def name
6 @name
7 end
8 end
9 d = Document.new("/tmp/test.txt")
10 puts d.name

1 class Document
2 attr_reader :name
3 def initialize(n)
4 @name = n
5 end
6 end
7

8 d = Document.new("/tmp/test.txt")
9 puts d.name

Some modern programming languages (e.g. Ruby) offer an ability to

generate the boilerplate for mutators and accessors in a single line.
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What getters are for?

This is what GPT-4 replied to my question: “Why should we use getters in

Java instead of making class fields public? What are the benefits?”
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Data Transfer Objects (DTO)

1 class BookDTO {
2 private int id;
3 private String author;
4 private String title;
5 BookDTO(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 int getId() { return id; }
8 String getAuthor() { return author; }
9 String getTitle() { return title; }
10 }

1 class JsonApi {
2 BookDTO getById(int id) { /* ... */ }
3 }
4

5 BookDTO dto = api.getById(42);
6

7 print(dto.getTitle());
8 print(dto.getAuthor());

There is no excuse for the use of DTO [Bugayenko, 2016b]. Almost...
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Chapter #2:

Encapsulation
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“Encapsulation is most often achieved through

information hiding, which is the process of hiding all

the secrets of an object that do not contribute to its

essential characteristics; typically, the structure of

an object is hidden, as well as the implementation of

its methods... Encapsulation provides explicit

barriers among different abstractions and thus leads

to a clear separation of concerns.”

— Grady Booch, Robert A. Maksimchuk, Michael W. Engle, Bobbi J. Young, Jim
Connallen, and Kelli A. Houston. Object-Oriented Analysis and Design With
Applications. Addison-Wesley, 1994. doi:10.5555/1407387

https://doi.org/10.5555/1407387
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“In most ways, encapsulation is a discipline more

than a real barrier; seldom is the integrity of an

object protected in any absolute sense, and this is

especially true of software objects, so it is up to the

user of an object to respect that object’s

encapsulation.”

— David West. Object Thinking. Pearson Education, 2004. doi:10.5555/984130

https://doi.org/10.5555/984130
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Who is protecting the integrity better?

1 class User {
2 private String name;
3 User(String n) { name = n; }
4 int getName() {
5 return this.name;
6 }
7 }
8 if (employees.contains(user.getName())) {
9 /* pay a salary */
10 }

1 class User {
2 private String name;
3 User(String n) { name = n; }
4 bool isEmployee() {
5 return employees.contains(this.name);
6 }
7 }
8 if (user.isEmployee()) {
9 /* pay a salary */
10 }

Which class hides its data better?
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Who knows about data semantic?

1 class Box {
2 private int weight;
3 Box(int kg) { weight = kg; }
4 int getWeight() {
5 return this.weight;
6 }
7 }
8 int w = box.getWeight();
9 int lbs = w / 0.454;
10 printf("The weight is \%d lbs\n");

1 class Box {
2 private int weight;
3 Box(int kg) { weight = kg; }
4 int getLbs() {
5 return this.weight / 0.454;
6 }
7 }
8 int lbs = box.getLbs();
9 printf("The weight is \%d lbs\n");

What happens if the Box decides to store the weight in pounds instead

of kilograms? How will it know how many of its clients still assume that

the weight is in kilograms? [Bugayenko, 2014]
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Chapter #3:

The Alternative
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“Tell-Don’t-Ask principle: Rather than asking an

object for data and acting on that data, we should

instead tell an object what to do. This encourages to

move behavior into an object to go with the data.”

— Martin Fowler. TellDontAsk.
https://martinfowler.com/bliki/TellDontAsk.html, sep 2013. [Online;
accessed 12-09-2024]

https://martinfowler.com/bliki/TellDontAsk.html
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“One of the fundamental principles

of object-oriented design is to

combine data and behavior, so that

the basic elements of our system

(objects) combine both together.

This is often a good thing because

this data and the behavior that

manipulates them are tightly

coupled.”

Source: Martin Fowler. TellDontAsk. https:
//martinfowler.com/bliki/TellDontAsk.html,
sep 2013. [Online; accessed 12-09-2024]

https://martinfowler.com/bliki/TellDontAsk.html
https://martinfowler.com/bliki/TellDontAsk.html
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1) Tell Don’t Ask, an Example

1 class BookDTO {
2 private int id;
3 private String author;
4 private String title;
5 BookDTO(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 void print() { /* ... */ }
8 }

1 class JsonApi {
2 BookDTO getById(int id) { /* ... */ }
3 }
4

5 BookDTO dto = api.getById(42);
6 dto.print();

The print() method may also be called a “printer” [Bugayenko, 2016a].
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“Though getter/setter methods are commonplace in

Java, they are not particularly object-oriented. In

fact, they can damage your code’s maintainability.

Moreover, the presence of numerous getter and

setter methods is a red flag that the program isn’t

necessarily well designed from an OO perspective.”

— Allen Holub. Why Getter and Setter Methods Are Evil.
https://www.infoworld.com/article/2161183/
why-getter-and-setter-methods-are-evil.html, sep 2003. [Online;
accessed 12-09-2024]

https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
https://www.infoworld.com/article/2161183/why-getter-and-setter-methods-are-evil.html
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2) Get rid of the “get” prefix

1 class Book {
2 private int id;
3 private String author;
4 private String title;
5 Book(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 int id() { return id; }
8 String author() { return author; }
9 String title() { return title; }
10 }

1 class JsonApi {
2 Book getById(int id) { /* ... */ }
3 }
4

5 Book book = api.getById(42);
6

7 print(book.author());
8 print(book.title());
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3) Make fields public

1 class Book {
2 public final int id;
3 public final String author;
4 public final String title;
5 Book(int i, String a, String t)
6 { id = i; author = a; title = t; }
7 }

1 class JsonApi {
2 Book getById(int id) { /* ... */ }
3 }
4

5 Book book = api.getById(42);
6

7 print(book.author);
8 print(book.title);
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