
Algorithms

History, State, Behavior, Enemies of OOP

Yegor Bugayenko

Lecture #1 out of 8

90 minutes

All visual and text materials presented in this slidedeck are either
originally made by the author or taken from public Internet sources,
such as website. Copyright belongs to their respected authors.



2/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

History

Original Intent

Object Thinking vs. Algorithms

Enemies of Object Thinking

How to Pass the Exam?

Read and Watch



3/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

WARNING!

In the pursuit of academic enlightenment within this course, it is

paramount to caution that the doctrines disseminated may present a

potentially hazardous venture if employed in real-life software projects.

This inherent risk arises from the potential incongruity with the broadly

accepted canon of object-oriented programming and recognized best

programming practices. If one remains resolute in their decision to adapt

their coding methodologies to align with the principles propagated in this

course, it would be prudent to employ a certain degree of foresight. A

humorous, yet sincere suggestion, would be to secure alternate

employment prior to a possible premature termination of one’s current

professional engagement.

Written by me, edited by ChatGPT



History Intent O.T. Enemies Exam Literature 4/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #1:

History



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

5/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Who started it?

Ivan Sutherland’s seminal Sketchpad application was an early inspiration

for OOP, created between 1961 and 1962 and published in his Sketchpad

Thesis in 1963. Any object could become a “master,” and additional

instances of the objects were called “occurrences”. Sketchpad’s masters

share a lot in common with JavaScript’s prototypal inheritance.

(c) Wikipedia



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

6/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Who invented Objects, Classes, and Inheritance?

Simula was developed in the 1965 at the Norwegian Computing Center in

Oslo, by Ole-Johan Dahl and Kristen Nygaard. Like Sketchpad, Simula

featured objects, and eventually introduced classes, class inheritance,

subclasses, and virtual methods. (c) Wikipedia



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

7/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Simula-67: Sample Code

1 Class Figure;
2 Virtual: Real Procedure square Is Procedure square;;
3 Begin
4 End;
5 Figure Class Circle (c, r);
6 Real c, r;
7 Begin
8 Real Procedure square;
9 Begin

10 square := 3.1415 * r * r;
11 End;
12 End;



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

8/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Who coined the “OOP” term?

Smalltalk was created in the 1970s at Xerox PARC by Learning Research

Group (LRG) scientists, including Alan Kay, Dan Ingalls, Adele Goldberg,

Ted Kaehler, Diana Merry, and Scott Wallace. (c) Wikipedia



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

9/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Smalltalk: Sample Code

1 Object subclass: Account [
2 | balance |
3 Account class >> new [
4 | r |
5 r := super new. r init. ^r
6 ]
7 init [ balance := 0 ]
8 ]
9 Account extend [

10 deposit: amount [ balance := balance + amount ]
11 ]
12 a := Account new
13 a deposit: 42



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

10/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“Everyone will be in a favor of OOP. Every

manufacturer will promote his products as

supporting it. Every manager will pay lip service to

it. Every programmer will practice it (differently).

And no one will know just what it is.”

— Tim Rentsch,

Object Oriented Programming,

ACM SIGPLAN Notices 17.9, 1982



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

11/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Who made it all popular?

C++ was created by Danish computer scientist Bjarne Stroustrup in 1985,

by enhancing C language with Simula-like features. C was chosen because

it was general-purpose, fast, portable and widely used.

You may enjoy watching this one-hour dialog of Dr. Stroustrup and me.

https://www.youtube.com/watch?v=ae6nFZn3auQ


History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

12/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

C++: Sample Code

1 class Figure {
2 virtual float square() = 0;
3 };
4 class Circle : public Figure {
5 Circle(float c, float r) : c(c), r(r) {};
6 float square() { return 3.1415 * r * r; };
7 private:
8 float c, r;
9 };



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

13/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“There are as many definitions of OOP as there

papers and books on the topic”

— Ole Lehrmann Madsen et al.,

What Object-Oriented Programming May Be—And What

It Does Not Have to Be, ECOOP’89



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

14/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“I made up the term ‘object-oriented,’ and I can tell

you I didn’t have C++ in mind”

— Alan Kay, OOPSLA’97

There was an interesting debate between Alan Kay and a few readers of my blog,

in the comments section under this blog post: Alan Kay Was Wrong About Him

Being Wrong

https://www.yegor256.com/2017/12/12/alan-kay-was-wrong.html
https://www.yegor256.com/2017/12/12/alan-kay-was-wrong.html


History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

15/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

What happened later?

C++ was released in 1985. And then...

Erlang 1986

Eiffel 1986

Self 1987

Perl 1988

Haskell 1990

Python 1991

Lua 1993

JavaScript 1995

Ruby 1995

Java 1995

Go 1995

PHP3 1998

C# 2000

Rust 2010

Swift 2014



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

16/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“There is no uniformity or an agreement on the set

of features and mechanisms that belong in an OO

language as the paradigm itself is far too general”

— Oscar Nierstrasz,

A Survey of Object-Oriented Concepts, 1989



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

17/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Incomplete list of OOP features, so far:

Polymorphism

Nested Objects

Traits

Templates

Generics

Invariants

Classes

NULL

Exceptions

Operators

Methods

Static Blocks

Virtual Tables

Coroutines

Monads

Algebraic Types

Annotations

Interfaces

Constructors

Destructors

Lifetimes

Volatile Variables

Synchronization

Macros

Inheritance

Overloading

Tuple Types

Closures

Access Modifiers

Pattern Matching

Enumerated Types

Namespaces

Modules

Type Aliases

Decorators

Lambda Functions

Type Inference

Properties

Value Types

Multiple Inheritance

Events

Callbacks

NULL Safety

Streams

Buffers

Iterators

Generators

Aspects

Anonymous Objects

Anonymous Functions

Reflection

Type Casting

Lazy Evaluation

Garbage Collection

Immutability



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

18/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“Object oriented programs are offered as

alternatives to correct ones... Object-oriented

programming is an exceptionally bad idea which

could only have originated in California.”

— Edsger W. Dijkstra, 1989



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

19/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“C++ is a horrible language. . . C++ leads to really,

really bad design choices. . . In other words, the only

way to do good, efficient, and system-level and

portable C++ ends up to limit yourself to all the

things that are basically available in C.”

— Linus Torvalds, 2007

Creator of Linux



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

20/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“OO seems to bring at least as many problems to

the table as it solves”

— Jeff Atwood, 2007

Co-founder of Stack Overflow



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

21/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“I think that large objected-oriented programs

struggle with increasing complexity as you build this

large object graph of mutable objects. You know,

trying to understand and keep in your mind what

will happen when you call a method and what will

the side effects be.”

— Rich Hickey, 2010

Creator of Clojure



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

22/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

The complexity of object-oriented code

remains its primary drawback



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

23/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“Reading an OO code you can’t see the big picture

and it is often impossible to review all the small

functions that call the one function that you

modified”

— Asaf Shelly, 2015

Flaws of Object Oriented Modeling



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

24/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“Object oriented programming promotes ease in

designing reusable software but the long coded

methods makes it unreadable and enhances the

complexity of the methods”

— Zeba Khanam, 2018

Barriers to Refactoring: Issues and Solutions,

International Journal on Future Revolution in Computer

Science & Communication Engineering



History Intent O.T. Enemies Exam Literature
[ Sketchpad Objects Simula-67 OOP Smalltalk Stroustrup C++ Languages Features ]

25/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Thus, we don’t know anymore what

exactly is object-oriented programming,

and whether it helps us write better code

:(

You can find more quotes in this blog post of mine: What’s Wrong With

Object-Oriented Programming?

https://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html
https://www.yegor256.com/2016/08/15/what-is-wrong-object-oriented-programming.html


History Intent O.T. Enemies Exam Literature 26/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #2:

Original Intent



History Intent O.T. Enemies Exam Literature 27/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

“The contemporary mainstream understanding of

objects (which is not behavioral) is but a pale

shadow of the original idea and anti-ethical to the

original intent”

— David West,

Object Thinking, 2004

You may enjoy watching our conversation with Dr. West: part I and part II.

https://www.youtube.com/watch?v=s-hdZZzMCac
https://www.youtube.com/watch?v=bW5K5cJ-AVs


History Intent O.T. Enemies Exam Literature 28/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

A system is a composition of objects that

are abstractions, which hide data and

expose behavior*

* This is how I understand the original intent.



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

29/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

1) What is an “abstraction”?

• Color: red
•Weight: 120g

• Price: $0.99

1 var file = {
2 path: '/tmp/data.txt',
3 read: function() { ... },
4 write: function(txt) { ... }
5 }

We deal with an abstraction as if it was a real thing, but eliminating

unnecessary details. We do file.read() instead of “open file handler for

data.txt, read byte by byte, store in byte buffer, wait for the end of file,

return the result.”



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

30/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

How many abstractions are needed?

1 int square(x1, y1, x2, y2) {
2 int w = x2 - x1;
3 if (w < 0) { w = w * -1; }
4 int h = y2 - y1;
5 if (h < 0) { h = h * -1; }
6 return w * h;
7 }

1 int distance(left, right) {
2 int d = right - left;
3 if (d < 0) { d = d * -1; }
4 return d;
5 }
6 int square(x1, y1, x2, y2) {
7 return distance(x2, x1)
8 * distance(y2, y1);
9 }

There are two abstractions at the right snippet (“square” and “distance”),

while only one abstraction at the left one (just “square”).



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

31/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Levels of abstraction

1 int distance(left, right) {
2 int d = right - left;
3 if (d < 0) { d = d * -1; }
4 return d;
5 }
6 int square(x1, y1, x2, y2) {
7 return distance(x2, x1)
8 * distance(y2, y1);
9 }

square(3, 9, 13, 2)

distance(13, 3) distance(2, 9)

Higher level abstractions must not know and/or rely on semantics of lower

level abstractions.



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

32/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

2) What is “data hiding”?

1 f = new File("/tmp/data.txt");
2 // The data escapes the object! :(
3 p = f.getPath();
4 FileUtils.deleteFile(p);

1 f = new File("/tmp/data.txt");
2 // The boolean data escapes too :)
3 done = f.delete();
4 assert(done);

Obviously, some data must escape your objects.



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

33/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

3) What is “behavior exposing”?

This is so called “anemic” object:

1 var user = {
2 login: 'jeff',
3 password: 'swordfish',
4 age: 32
5 }
6 function print(u) {
7 console.log(`Hello, ${u.login},
8 you are ${u.age} today!`);
9 }

10 print(user);

This object is “alive”:

1 var user = {
2 login: 'jeff',
3 password: 'swordfish',
4 age: 32,
5 print: function() {
6 console.log(`Hello, ${this.login},
7 you are ${this.age} today!`);
8 }
9 }

10 user.print();



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

34/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

An object as a function

1 int distance(left, right) {
2 int d = right - left;
3 if (d < 0) { d = d * -1; }
4 return d; }
5 int square(x1, y1, x2, y2) {
6 return distance(x2, x1)
7 * distance(y2, y1); }

1 class Distance {
2 private int r; private int l;
3 Distance(l, r) { l = l; r = r; }
4 int value() {
5 int d = right - left;
6 if (d < 0) { d = d * -1; }
7 return d; } }
8 int square(x1, y1, x2, y2) {
9 return new Distance(x2, x1).value()

10 * new Distance(y2, y1).value(); } }

The Java object Distance on the right snippet is semantically equivalent

to the C function distance() on the left one.



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

35/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Identity, State, Behavior

1 class Circle {
2 private float radius;
3 Circle(float r) {
4 radius = r; }
5 void getRadius() {
6 return radius; }
7 void setRadius(float r) {
8 radius = r; }
9 float square() {

10 return 3.14 * radius * radius; }
11 }

1 // Identity:
2 c1 = new Circle(42.0);
3 c2 = new Circle(42.0);
4 c1 != c2;
5

6 // State:
7 c1 = new Circle(42.0);
8 c2 = new Circle(42.0);
9 c1.getRadius() == c2.getRadius();

10

11 // Behavior:
12 c1 = new Circle(42.0);
13 c2 = new Circle(-42.0);
14 c1.square() == c2.square();



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

36/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

State vs. Behavior

1 class Circle {
2 private float r;
3 void setR(float r) { this.r = r; }
4 float getR() { return this.r; }
5 }
6 class FigureUtils {
7 static float calcuateSquare(Circle c) {
8 return 3.14 * c.getR() * c.getR();
9 }

10 }
11 Circle c = new Circle();
12 c.setR(42.0);
13 float s = FigureUtils.square(c);

1 class Circle {
2 private float r;
3 Circle(float r) { this.r = r; }
4 float square() {
5 return 3.14 * this.r * this.r;
6 }
7 }
8 Circle c = new Circle(42.0);
9 float s = c.square();

How to decide what is state and what is

behavior?



History Intent O.T. Enemies Exam Literature
[ Abstraction Rectangle Levels Rectangle Rectangle Function State FigureUtils Composition ]

37/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

4) What is “composition”?

1 canvas = new Canvas();
2 canvas.addCircle(new Circle(42));
3 canvas.draw();

1 canvas = new Canvas();
2 circle = new Circle(42);
3 circle.drawOn(canvas);

What is composition? What is the “right” composition?



History Intent O.T. Enemies Exam Literature 38/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #3:

Object Thinking vs. Algorithms



History Intent O.T. Enemies Exam Literature
[ While Buffer Loop Loop Composition ]

39/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

While-Do loop

1 buffer = []
2 while true
3 c = STDIN.readchar
4 break if c == "\n"
5 if buffer.length > 3
6 STDOUT.puts buffer.join
7 buffer = []
8 end
9 buffer << c

10 end

1 $ echo 'Hello, world!' | ruby a.rb
2 Hell
3 o, w
4 orld



History Intent O.T. Enemies Exam Literature
[ While Buffer Loop Loop Composition ]

40/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Buffer abstraction

1 buffer = []
2 while true
3 c = STDIN.readchar
4 break if c == "\n"
5 if buffer.length > 3
6 STDOUT.puts buffer.join
7 buffer = []
8 end
9 buffer << c

10 end

1 class Buffer
2 def initialize; @data = []; end
3 def push(c)
4 if @data.length > 3
5 STDOUT.puts @data.join
6 @data = []
7 end
8 @data << c
9 end

10 end
11 buffer = Buffer.new
12 while true
13 c = STDIN.readchar
14 break if c == "\n"
15 buffer.push c
16 end



History Intent O.T. Enemies Exam Literature
[ While Buffer Loop Loop Composition ]

41/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Loop abstraction

1 class Buffer
2 def initialize; @data = []; end
3 def push(c)
4 if @data.length > 3
5 STDOUT.puts @data.join
6 @data = []
7 end
8 @data << c
9 end

10 end
11 buffer = Buffer.new
12 while true
13 c = STDIN.readchar
14 break if c == "\n"
15 buffer.push c
16 end

1 class Buffer
2 # the same
3 end
4 class Pull
5 def initialize(b); @buf = b; end
6 def again
7 c = STDIN.readchar
8 return false if c == "\n"
9 @buf.push c

10 true
11 end
12 end
13 buffer = Buffer.new
14 pull = Pull.new(buffer)
15 while pull.again; end



History Intent O.T. Enemies Exam Literature
[ While Buffer Loop Loop Composition ]

42/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Loop abstraction

1 class Buffer
2 # the same
3 end
4 class Pull
5 def initialize(b); @buf = b; end
6 def again
7 c = STDIN.readchar
8 return false if c == "\n"
9 @buf.push c

10 true
11 end
12 end
13 buffer = Buffer.new
14 pull = Pull.new(buffer)
15 while pull.again; end

1 class Buffer
2 # the same
3 end
4 class Pull
5 # the same
6 end
7 class Pulls
8 def initialize(p); @pull = p; end
9 def fetch

10 while @pull.again; end
11 end
12 end
13 Pulls.new(Pull.new(Buffer.new)).fetch



History Intent O.T. Enemies Exam Literature
[ While Buffer Loop Loop Composition ]

43/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Object composition

1 class Buffer
2 def initialize; @data = []; end
3 def push(c)
4 if @data.length > 3
5 STDOUT.puts @data.join
6 @data = []
7 end
8 @data << c
9 end

10 end
11

12 class Pull
13 def initialize(b); @buf = b; end
14 def again
15 c = STDIN.readchar
16 return false if c == "\n"
17 @buf.push c

18 true
19 end
20 end
21

22 class Pulls
23 def initialize(p); @pull = p; end
24 def fetch
25 while @pull.again; end
26 end
27 end
28

29 Pulls.new(
30 Pull.new(
31 Buffer.new
32 )
33 ).fetch



History Intent O.T. Enemies Exam Literature 44/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #4:

Enemies of Object Thinking



History Intent O.T. Enemies Exam Literature
[ List ]

45/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

What makes us think as algorithms

Global scope (static methods)

Anemic objects (getters)

Mutability (setters)

Workers (“-er” suffix)

NULL references

Type casting (reflection)

Inheritance



History Intent O.T. Enemies Exam Literature 46/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #5:

How to Pass the Exam?



History Intent O.T. Enemies Exam Literature
[ Project ]

47/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Make a software project, which...

... is larger than 5,000 lines of functional code,

... compiles and works,

... doesn’t have static methods,

... has no getters or public attributes,

... doesn’t use NULL references,

... has only immutable objects,

... doesn’t use inheritance.

Otherwise, just attend 75% of all lectures and you will get your “C”.



History Intent O.T. Enemies Exam Literature 48/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Chapter #6:

Read and Watch



History Intent O.T. Enemies Exam Literature 49/49

Algorithms: History, State, Behavior, Enemies of OOP @yegor256

Read and watch:

David West, Object Thinking, 2004

Yegor Bugayenko, Elegant Objects, 2016

Read my 80+ blog posts about OOP, here

Watch my 15+ lectures about OOP, on YouTube

“Object Thinking” meetup, watch on YouTube.

https://www.yegor256.com/tag/oop
https://www.youtube.com/playlist?list=PLaIsQH4uc08yw2CsNv5OV30GfKE6XVGii
https://www.youtube.com/watch?v=yT6oO28wEik&list=PLaIsQH4uc08yetzX86w1pPck1QtGEy_ik

