
Releasing

Yegor Bugayenko

Lecture #7 out of 8

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=VTsbvZSMwYE


2/25

Releasing @yegor256

Andre Van Der Hoek

“Simply making available and retrieving

interdependent components individually neither

facilitates independent software development nor

encourages widespread use of large systems of

systems.”

— Andre Van Der Hoek, Richard S. Hall, Dennis Heimbigner, and Alexander L.
Wolf. Software Release Management. ACM SIGSOFT Software Engineering Notes,
22(6):159–175, 1997. doi:10.1145/267896.267909

https://doi.org/10.1145/267896.267909


3/25

Releasing @yegor256

Günther Ruhe

“Release planning is typically done ad hoc and not

based on sound models and methodologies. This is

even the case when planning involves several

hundred features.”

— Günther Ruhe and Moshood Omolade Saliu. The Art and Science of Software
Release Planning. IEEE Software, 22(6):47–53, 2005. doi:10.1109/MS.2005.164

https://doi.org/10.1109/MS.2005.164


4/25

Releasing @yegor256

1. Release when it’s different, not when

it’s good.



5/25

Releasing @yegor256

Kazu Okumoto

“Goel-Okumoto model: An important problem of

practical concern is the determination of the point

when testing should stop and the system can be

considered ready for release, that is, the

determination of the software release time. Two

criteria are investigated: software reliability and

total expected cost.”

— Kazu Okumoto and Amrit L. Goel. Optimum Release Time for Software
Systems Based on Reliability and Cost Criteria. Journal of Systems and Software,
1(1):315–318, 1979. doi:10.1016/0164-1212(79)90033-5

https://doi.org/10.1016/0164-1212(79)90033-5


6/25

Releasing @yegor256

Shigeru Yamada

“This paper extends the problem of Okumoto and

Goel [1979] by evaluating both criteria

simultaneously. We discuss optimal software release

policies which minimize a total average software

cost under the constraint of satisfying a software

reliability requirement.”

— Shigeru Yamada and Shunji Osaki. Cost-Reliability Optimal Release Policies
for Software Systems. IEEE Transactions on Reliability, 34(5):422–424, 1985.
doi:10.1109/TR.1985.5222222

https://doi.org/10.1109/TR.1985.5222222


7/25

Releasing @yegor256

“The optimum software release time

is the testing time which comes

closest to satisfying some

pre-specified software reliability.”

Source: Shigeru Yamada and Shunji Osaki.

Cost-Reliability Optimal Release Policies for

Software Systems. IEEE Transactions on Reliability, 34
(5):422–424, 1985. doi:10.1109/TR.1985.5222222

https://doi.org/10.1109/TR.1985.5222222


8/25

Releasing @yegor256

Steve McConnell

“The question of whether to release software is a

treacherous one. The answer must teeter on the line

between releasing poor quality software early and

releasing high quality software late. The questions

of ‘Is the software good enough to release now?’ and

‘When will the software be good enough to release?’

can become critical to a company’s survival.”

— Steve McConnell. Software Project Survival Guide. Microsoft Press, 1998.
doi:10.5555/270015

https://doi.org/10.5555/270015


9/25

Releasing @yegor256

Nasif Imtiaz

“We find that the open source packages are typically

fast in releasing security fixes, as the median release

comes within 4 days of the corresponding security

fix. However, 25% of the releases still have a delay of

at least 20 days.”

— Nasif Imtiaz, Aniqa Khanom, and Laurie Williams. Open or Sneaky? Fast or
Slow? Light or Heavy? Investigating Security Releases of Open Source
Packages. IEEE Transactions on Software Engineering, 49(4):1540–1560, 2022.
doi:10.1109/TSE.2022.3181010

https://doi.org/10.1109/TSE.2022.3181010


10/25

Releasing @yegor256

2. Fully automate the release process,

avoiding any manual intervention.



11/25

Releasing @yegor256

Michael Nygard

“Releases should be about as big an event as getting

a haircut. There’s an added benefit of frequent

releases: it forces you to get really good at doing

releases and deployments.”

— Michael Nygard. Release It!: Design and Deploy Production-Ready Software.
The Pragmatic Bookshelf, 2007. doi:10.5555/1200767

https://doi.org/10.5555/1200767


12/25

Releasing @yegor256

Jez Humble

“Over time, deployments should tend towards being

fully automated. There should be two tasks for a

human being to perform to deploy software into a

development, test, or production environment: to

pick the version and environment and to press the

‘deploy’ button.”

— Jez Humble and David Farley. Continuous Delivery: Reliable Software Releases
Through Build, Test, and Deployment Automation. Pearson Education, 2010.
doi:10.5555/1869904

https://doi.org/10.5555/1869904


13/25

Releasing @yegor256

3. Release frequently.



14/25

Releasing @yegor256

Victor Basili

“If improving productivity is the main concern, then

it may be wise to try to avoid scheduling small error

correction releases. Instead the manager should try,

when possible, to package small error corrections in

a release with larger enhancements.

Respectfully

disagree!

”

— Victor Basili, Lionel Briand, Steven Condon, Yong-Mi Kim, Walcélio L. Melo,
and Jon D. Valen. Understanding and Predicting the Process of Software
Maintenance Releases. In Proceedings of the 18th International Conference on
Software Engineering, pages 464–474. IEEE, 1996. doi:10.1109/ICSE.1996.493441

https://doi.org/10.1109/ICSE.1996.493441


15/25

Releasing @yegor256

Foutse Khomh

“We found that (1) with shorter release cycles, users

do not experience significantly more post-release

bugs and (2) bugs are fixed faster, yet (3) users

experience these bugs earlier during software

execution (the program crashes earlier).”

— Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and Bram Adams. Do Faster
Releases Improve Software Quality? An Empirical Case Study of Mozilla
Firefox. In Proceedings of the 9th Working Conference on Mining Software
Repositories (MSR), pages 179–188. IEEE, 2012. doi:10.1109/MSR.2012.6224279

https://doi.org/10.1109/MSR.2012.6224279


16/25

Releasing @yegor256

4. Use SemVer.



17/25

Releasing @yegor256

“The implication of semantic

versioning is that clients may rely

on dependencies subject to flexible

version constraints, like 1.2.*.
Such a client may safely upgrade to

new micro versions (e.g., from

1.2.3 to 1.2.4), fully automated.”

Source: Patrick Lam, Jens Dietrich, and David J.

Pearce. Putting the Semantics into Semantic

Versioning. In Proceedings of the SIGPLAN
International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and
Software, pages 157–179, 2020.
doi:10.1145/3426428.3426922

https://doi.org/10.1145/3426428.3426922


18/25

Releasing @yegor256

5. Generate release notes

automatically.



19/25

Releasing @yegor256

“Automatically generated release

notes provide an automated

alternative to manually writing

release notes for your GitHub

releases. With automatically

generated release notes, you can

quickly generate an overview of the

contents of a release.”

https://docs.github.com/en/repositories/
releasing-projects-on-github/automatically-
generated-release-notes

https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-release-notes
https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-release-notes
https://docs.github.com/en/repositories/releasing-projects-on-github/automatically-generated-release-notes


20/25

Releasing @yegor256

Some Release Notes Generators:

• ClickUp
• Taskade
• Zeda
• Aha
• ReleasesNotes
• ScribeHow
• Released
• ai-github-release-notes

Try Google search with “generate release notes with AI”

https://clickup.com/features/ai/release-notes-generator
https://www.taskade.com/generate/programming/release-notes
https://zeda.io/feature/release-note-ai
https://www.aha.io/blog/introducing-ai-powered-release-notes
https://www.releasesnotes.dev/
https://scribehow.com/tools/product-release-note-generator
https://www.released.so/
https://github.com/marketplace/ai-github-release-notes


21/25

Releasing @yegor256

Jianyu Wu

“We find that: 1) RN producers are more likely to

miss information than to include incorrect

information, especially for breaking changes; 2)

improper layout may bury important information

and confuse users; 3) many users find RNs

inaccessible due to link deterioration, lack of

notification, and obfuscate RN locations; 4)

automating and regulating RN production remains

challenging despite the great needs of RN

producers.”

— Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, and Minghui Zhou.
Demystifying Software Release Note Issues on GitHub. In Proceedings of the
30th International Conference on Program Comprehension, pages 602–613, 2022.
doi:10.1145/3524610.3527919

https://doi.org/10.1145/3524610.3527919


22/25

Releasing @yegor256

6. Publish binaries.



23/25

Releasing @yegor256

Some Artifact Publishing Platforms:

•Maven Central for Java, Kotlin, Scala, Groovy, etc.

•Npm for JavaScript

• PyPi for Python
• RubyGems for Ruby

• Crates for Rus

https://central.sonatype.com/
https://www.npmjs.com/
https://pypi.org/
https://rubygems.org/
https://crates.io/


24/25

Releasing @yegor256

References
Victor Basili, Lionel Briand, Steven Condon, Yong-Mi

Kim, Walcélio L. Melo, and Jon D. Valen.

Understanding and Predicting the Process of

Software Maintenance Releases. In Proceedings of
the 18th International Conference on Software
Engineering, pages 464–474. IEEE, 1996.
doi:10.1109/ICSE.1996.493441.

Jez Humble and David Farley. Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Pearson Education, 2010.

doi:10.5555/1869904.

Nasif Imtiaz, Aniqa Khanom, and Laurie Williams.

Open or Sneaky? Fast or Slow? Light or Heavy?

Investigating Security Releases of Open Source

Packages. IEEE Transactions on Software
Engineering, 49(4):1540–1560, 2022.
doi:10.1109/TSE.2022.3181010.

Foutse Khomh, Tejinder Dhaliwal, Ying Zou, and

Bram Adams. Do Faster Releases Improve

SoftwareQuality? An Empirical Case Study of

Mozilla Firefox. In Proceedings of the 9th Working
Conference on Mining Software Repositories (MSR),
pages 179–188. IEEE, 2012.

doi:10.1109/MSR.2012.6224279.

Patrick Lam, Jens Dietrich, and David J. Pearce.

Putting the Semantics into Semantic Versioning.

In Proceedings of the SIGPLAN International
Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software, pages
157–179, 2020. doi:10.1145/3426428.3426922.

Steve McConnell. Software Project Survival Guide.
Microsoft Press, 1998. doi:10.5555/270015.

Michael Nygard. Release It!: Design and Deploy
Production-Ready Software. The Pragmatic

Bookshelf, 2007. doi:10.5555/1200767.

Kazu Okumoto and Amrit L. Goel. Optimum Release

Time for Software Systems Based on Reliability

and Cost Criteria. Journal of Systems and Software,
1(1):315–318, 1979.

doi:10.1016/0164-1212(79)90033-5.

https://doi.org/10.1109/ICSE.1996.493441
https://doi.org/10.5555/1869904
https://doi.org/10.1109/TSE.2022.3181010
https://doi.org/10.1109/MSR.2012.6224279
https://doi.org/10.1145/3426428.3426922
https://doi.org/10.5555/270015
https://doi.org/10.5555/1200767
https://doi.org/10.1016/0164-1212(79)90033-5


25/25

Releasing @yegor256

Günther Ruhe and Moshood Omolade Saliu. The Art

and Science of Software Release Planning. IEEE
Software, 22(6):47–53, 2005.
doi:10.1109/MS.2005.164.

Andre Van Der Hoek, Richard S. Hall, Dennis

Heimbigner, and Alexander L. Wolf. Software

Release Management. ACM SIGSOFT Software
Engineering Notes, 22(6):159–175, 1997.
doi:10.1145/267896.267909.

Jianyu Wu, Hao He, Wenxin Xiao, Kai Gao, and

Minghui Zhou. Demystifying Software Release

Note Issues on GitHub. In Proceedings of the 30th
International Conference on Program
Comprehension, pages 602–613, 2022.
doi:10.1145/3524610.3527919.

Shigeru Yamada and Shunji Osaki. Cost-Reliability

Optimal Release Policies for Software Systems.

IEEE Transactions on Reliability, 34(5):422–424,
1985. doi:10.1109/TR.1985.5222222.

https://doi.org/10.1109/MS.2005.164
https://doi.org/10.1145/267896.267909
https://doi.org/10.1145/3524610.3527919
https://doi.org/10.1109/TR.1985.5222222

