
Reviewing Changes

Yegor Bugayenko

Lecture #4 out of 8

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from

public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=TJ83ePwyH_A


2/28

Reviewing Changes @yegor256

Martin Fowler

“We should remember that pre-integration review

grew out of an open-source context where

contributions appear impromptu from weakly

connected developers.”

— Martin Fowler. Continuous Integration.

http://martinfowler.com/articles/continuousIntegration.html,
2006. [Online; accessed 07-02-2024]

http://martinfowler.com/articles/continuousIntegration.html


3/28

Reviewing Changes @yegor256

1. Raise issues, don’t resolve

them! [Bugayenko, 2015a]



4/28

Reviewing Changes @yegor256

Michael Fagan

“The inspection is not intended to redesign, evaluate

alternate design solutions, or to find solutions to

errors; it is intended just to find errors!”

— Michael Fagan. Design and Code Inspections to Reduce Errors in Program

Development. IBM Systems Journal, 38(3):258–287, 1999. doi:10.1147/sj.382.0258

https://doi.org/10.1147/sj.382.0258


5/28

Reviewing Changes @yegor256

Frank A. Ackerman

“Regardless of the application or the language, you

can expect inspections to find from seven to 20

major defects per thousand noncomment lines of

source code and to find major defects at a cost of

one to five staff-hours.”

— A. Frank Ackerman, Lynne S. Buchwald, and Frank H. Lewski. Software

Inspections: An Effective Verification Process. IEEE Software, 6(3):31–36, 1989.
doi:10.1109/52.28121

https://doi.org/10.1109/52.28121


6/28

Reviewing Changes @yegor256

Mateus Freira dos Santos

“In software projects with less than 34k lines of code,

the number of developers that never contribute

again after receiving a negative comment on the

first pull request is 10.97%; this number more than

doubles to 24.02% when evaluating projects with

more than 197k lines of code.”

— Mateus Freira, Josemar Caetano, Johnatan Oliveira, and Humberto

Marques-Neto. Analyzing the Impact of Feedback in GitHub on the Software

Developer’s Mood, 2018



7/28

Reviewing Changes @yegor256

2. Educate the author



8/28

Reviewing Changes @yegor256

Andrew Sutherland

“The meat of the code review dialog, no matter what

the medium, is the articulation of design rationale...

Engineers find code review dialogs useful for a

variety of purposes, but for understanding design

rationale more than any other.”

— Andrew Sutherland and Gina Venolia. Can Peer Code Reviews Be Exploited

for Later Information Needs? In Proceedings of the 31st International Conference
on Software Engineering: Companion Volume, pages 259–262. IEEE, 2009.
doi:10.1109/ICSE-COMPANION.2009.5070996

https://doi.org/10.1109/ICSE-COMPANION.2009.5070996


9/28

Reviewing Changes @yegor256

Brendan Cleary

“‘Raise issues, don’t resolve them.’ — this mentality

limits a group’s ability to collectively solve problems

and mentor developers.”

— Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and

Daniel German. Contemporary Peer Review in Action: Lessons From Open

Source Development. IEEE Software, 29(6):56–61, 2012. doi:10.1109/MS.2012.24

https://doi.org/10.1109/MS.2012.24


10/28

Reviewing Changes @yegor256

Alberto Bacchelli

“Our results show that, although the top motivation

driving code reviews is still finding defects, the

practice and the actual outcomes are less about

finding errors than expected: Defect related

comments comprise a small proportion and mainly

cover small logical low-level issues.”

— Alberto Bacchelli and Christian Bird. Expectations, Outcomes, and

Challenges of Modern Code Review. In Proceedings of the 35th International
Conference on Software Engineering, pages 712–721. IEEE, 2013.
doi:10.1109/ICSE.2013.6606617

https://doi.org/10.1109/ICSE.2013.6606617


11/28

Reviewing Changes @yegor256

Peter C. Rigby

“Contemporary review is performed regularly and

quickly just before the code is committed instead of

when a larger work product is complete as in

inspection. Contemporary reviewers prefers

discussion and fixing code over reporting defects.”

— Peter C. Rigby and Christian Bird. Convergent Contemporary Software Peer

Review Practices. In Proceedings of the 9th Joint Meeting on Foundations of
Software Engineering, pages 202–212, 2013. doi:10.1145/2491411.2491444

https://doi.org/10.1145/2491411.2491444


12/28

Reviewing Changes @yegor256

Caitlin Sadowski

“As developers build experience working at Google,

the average number of comments on their changes

decreases... Developers at Google who have started

within the past year typically have more than twice

as many comments per change.”

— Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto

Bacchelli. Modern Code Review: A Case Study at Google. In Proceedings of the
40th International Conference on Software Engineering: Software Engineering in
Practice, pages 181–190, 2018. doi:10.1145/3183519.3183525

https://doi.org/10.1145/3183519.3183525


13/28

Reviewing Changes @yegor256

Source: Caitlin Sadowski, Emma Söderberg, Luke Church, Michal Sipko, and Alberto Bacchelli. Modern Code

Review: A Case Study at Google. In Proceedings of the 40th International Conference on Software Engineering:
Software Engineering in Practice, pages 181–190, 2018. doi:10.1145/3183519.3183525

https://doi.org/10.1145/3183519.3183525


14/28

Reviewing Changes @yegor256

3. Don’t run the code in the

branch [Bugayenko, 2019].



15/28

Reviewing Changes @yegor256

4. Reject it, if it’s too big [Bugayenko,

2015b].



16/28

Reviewing Changes @yegor256

“Good programmers know what to write. Great ones

know what to rewrite (and reuse).”

— Eric Raymond. The Cathedral and the Bazaar. Knowledge, Technology &
Policy, 12(3):23–49, 1999. doi:10.1007/s12130-999-1026-0

https://doi.org/10.1007/s12130-999-1026-0


17/28

Reviewing Changes @yegor256

Frederic Painchaud

“To facilitate early and frequent feedback, OSS

projects tend to review smaller changes than

proprietary projects, ranging from 11 to 32 lines in

the median case. The small size lets reviewers focus

on the entire change, and the incrementality reduces

reviewers’ preparation time and lets them maintain

an overall picture of how the change fits into the

system.”

— Peter Rigby, Brendan Cleary, Frederic Painchaud, Margaret-Anne Storey, and

Daniel German. Contemporary Peer Review in Action: Lessons From Open

Source Development. IEEE Software, 29(6):56–61, 2012. doi:10.1109/MS.2012.24

https://doi.org/10.1109/MS.2012.24


18/28

Reviewing Changes @yegor256

“Both Android and AMD have a

median change size of 44 lines. This

median change size is larger than

Apache, 25 lines, and Linux, 32

lines, but much smaller than Lucent

where the number of non-comment

lines changed is 263 lines. Bing,

Chrome’s median change is 78

lines and includes 5 files.”

Source: Peter C. Rigby and Christian Bird.

Convergent Contemporary Software Peer Review

Practices. In Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, pages 202–212,
2013. doi:10.1145/2491411.2491444

https://doi.org/10.1145/2491411.2491444


19/28

Reviewing Changes @yegor256

“AMD has short review intervals,

with the median review taking 17.5

hours. Bing, SQL, and Office: 14.7,

19.8, and 18.9 hours respectively.

The median completion time is 15.7

and 20.8 hours, for Chrome and

Android, respectively.”

Source: Peter C. Rigby and Christian Bird.

Convergent Contemporary Software Peer Review

Practices. In Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, pages 202–212,
2013. doi:10.1145/2491411.2491444

https://doi.org/10.1145/2491411.2491444


20/28

Reviewing Changes @yegor256

5. Reject it, if it lowers code

coverage [Bugayenko, 2015b].



21/28

Reviewing Changes @yegor256

https://docs.codecov.com/docs/pull-request-comments

https://docs.codecov.com/docs/pull-request-comments


22/28

Reviewing Changes @yegor256

6. Reject it, if it doesn’t reproduce a

bug [Bugayenko, 2015b].



23/28

Reviewing Changes @yegor256

7. Rely on the CI status, but not too

much



24/28

Reviewing Changes @yegor256

Mairieli Wessel

“Our findings also suggest that the adoption of

GitHub Actions leads to more rejections of pull

requests (PRs), more communication in accepted

PRs and less communication in rejected PRs, fewer

commits in accepted PRs and more commits in

rejected PRs, and more time to accept a PR.”

— Mairieli Wessel, Joseph Vargovich, Marco A. Gerosa, and Christoph Treude.

GitHub Actions: The Impact on the Pull Request Process. Empirical Software
Engineering, 28(6):131, 2023. doi:10.1007/s10664-023-10369-w

https://doi.org/10.1007/s10664-023-10369-w


25/28

Reviewing Changes @yegor256

8. Employ ChatGPT



26/28

Reviewing Changes @yegor256



27/28

Reviewing Changes @yegor256

References
A. Frank Ackerman, Lynne S. Buchwald, and Frank H.

Lewski. Software Inspections: An Effective

Verification Process. IEEE Software, 6(3):31–36,
1989. doi:10.1109/52.28121.

Alberto Bacchelli and Christian Bird. Expectations,

Outcomes, and Challenges of Modern Code

Review. In Proceedings of the 35th International
Conference on Software Engineering, pages
712–721. IEEE, 2013.

doi:10.1109/ICSE.2013.6606617.

Yegor Bugayenko. Four NOs of a Serious Code

Reviewer.

https://www.yegor256.com/150209.html, feb
2015a. [Online; accessed 08-02-2024].

Yegor Bugayenko. A Few Valid Reasons to Reject a

Bug Fix.

https://www.yegor256.com/150622.html, jun
2015b. [Online; accessed 08-02-2024].

Yegor Bugayenko. Does Code Review Involve

Testing?

https://www.yegor256.com/191203.html, dec
2019. [Online; accessed 08-02-2024].

Michael Fagan. Design and Code Inspections to

Reduce Errors in Program Development. IBM
Systems Journal, 38(3):258–287, 1999.
doi:10.1147/sj.382.0258.

Martin Fowler. Continuous Integration.

http://martinfowler.com/articles/
continuousIntegration.html, 2006. [Online;
accessed 07-02-2024].

Mateus Freira, Josemar Caetano, Johnatan Oliveira,

and Humberto Marques-Neto. Analyzing the

Impact of Feedback in GitHub on the Software

Developer’s Mood, 2018.

Eric Raymond. The Cathedral and the Bazaar.

Knowledge, Technology & Policy, 12(3):23–49, 1999.
doi:10.1007/s12130-999-1026-0.

Peter Rigby, Brendan Cleary, Frederic Painchaud,

Margaret-Anne Storey, and Daniel German.

Contemporary Peer Review in Action: Lessons

https://doi.org/10.1109/52.28121
https://doi.org/10.1109/ICSE.2013.6606617
https://www.yegor256.com/150209.html
https://www.yegor256.com/150622.html
https://www.yegor256.com/191203.html
https://doi.org/10.1147/sj.382.0258
http://martinfowler.com/articles/continuousIntegration.html
http://martinfowler.com/articles/continuousIntegration.html
https://doi.org/10.1007/s12130-999-1026-0


28/28

Reviewing Changes @yegor256

From Open Source Development. IEEE Software,
29(6):56–61, 2012. doi:10.1109/MS.2012.24.

Peter C. Rigby and Christian Bird. Convergent

Contemporary Software Peer Review Practices. In

Proceedings of the 9th Joint Meeting on
Foundations of Software Engineering, pages
202–212, 2013. doi:10.1145/2491411.2491444.

Caitlin Sadowski, Emma Söderberg, Luke Church,

Michal Sipko, and Alberto Bacchelli. Modern

Code Review: A Case Study at Google. In

Proceedings of the 40th International Conference on
Software Engineering: Software Engineering in

Practice, pages 181–190, 2018.
doi:10.1145/3183519.3183525.

Andrew Sutherland and Gina Venolia. Can Peer

Code Reviews Be Exploited for Later Information

Needs? In Proceedings of the 31st International
Conference on Software Engineering: Companion
Volume, pages 259–262. IEEE, 2009.
doi:10.1109/ICSE-COMPANION.2009.5070996.

Mairieli Wessel, Joseph Vargovich, Marco A. Gerosa,

and Christoph Treude. GitHub Actions: The

Impact on the Pull Request Process. Empirical
Software Engineering, 28(6):131, 2023.
doi:10.1007/s10664-023-10369-w.

https://doi.org/10.1109/MS.2012.24
https://doi.org/10.1145/2491411.2491444
https://doi.org/10.1145/3183519.3183525
https://doi.org/10.1109/ICSE-COMPANION.2009.5070996
https://doi.org/10.1007/s10664-023-10369-w

