
Reporting Bugs

Yegor Bugayenko

Lecture #2 out of 8

80 minutes

The slidedeck was presented by the author in this YouTube Video

All visual and text materials presented in this slidedeck are either originally made by the author or taken from
public Internet sources, such as web sites. Copyright belongs to their respected authors.

https://www.youtube.com/watch?v=nLcnE4N3Nz4


2/25

Reporting Bugs @yegor256

Joel Spolsky

“Every good bug report needs exactly three things:

steps to reproduce, what you expected to see, and

what you saw instead.”

— Joel Spolsky. Painless Bug Tracking. https:
//www.joelonsoftware.com/2000/11/08/painless-bug-tracking/, nov
2000. [Online; accessed 07-02-2024]

https://www.joelonsoftware.com/2000/11/08/painless-bug-tracking/
https://www.joelonsoftware.com/2000/11/08/painless-bug-tracking/


3/25

Reporting Bugs @yegor256

Nicolas Bettenburg

“Well-written bug reports are likely to get more

attention among developers than poorly written

ones... Steps to reproduce and stack traces are most

useful in bug reports. The most severe problems

encountered by developers are errors in steps to

reproduce, incomplete information, and wrong

observed behavior.”

— Nicolas Bettenburg, Sascha Just, Adrian Schröter, Cathrin Weiss, Rahul
Premraj, and Thomas Zimmermann. What Makes a Good Bug Report? In
Proceedings of the 16th International Symposium on Foundations of Software
Engineering, pages 308–318, 2008. doi:10.1145/1453101.1453146

https://doi.org/10.1145/1453101.1453146


4/25

Reporting Bugs @yegor256

Tommaso Dal Sasso

“The elements considered to be harder to provide

[while reporting bugs] are the entity (e.g., class, file)

that likely contains the defect, the steps to

reproduce the failure, and a test case showing the

defect.”

— Tommaso Dal Sasso, Andrea Mocci, and Michele Lanza. What Makes a
Satisficing Bug Report? In Proceedings of the International Conference on
Software Quality, Reliability and Security (QRS), pages 164–174. IEEE, 2016.
doi:10.1109/QRS.2016.28

https://doi.org/10.1109/QRS.2016.28


5/25

Reporting Bugs @yegor256

1. Expect any program to have an

unlimited number of bugs



6/25

Reporting Bugs @yegor256

“We can never be certain that a testing system is

correct. These theoretical limit tells us that there

will never be a way to be sure we have a perfect

understanding of what a program is supposed to do

(the expected or required results) and that any

testing system we might construct will always have

some possibility of failing. In short, we cannot

achieve 100 percent confidence no matter how much

time and energy we put into it!”

— Bill Hetzel. The Complete Guide to Software Testing. A Wiley-QED
Publication, 1993



7/25

Reporting Bugs @yegor256

Myers, Glenford J.

“You cannot test a program to guarantee that it is

error free... It is impractical, often impossible, to find

all the errors in a program.”

— Glenford J. Myers, Tom Badgett, Todd M. Thomas, and Corey Sandler. The
Art of Software Testing. Wiley Online Library, 2004



8/25

Reporting Bugs @yegor256

2. Don’t ask questions or suggest

features, report bugs instead



9/25

Reporting Bugs @yegor256

All of These Are Bugs:

• Lack of functionality

• Lack of tests

• Lack of documentation

• Suboptimal implementation

•Design inconsistency

•Naming is weird

• Unstable test

More about it by Bugayenko [2018a].



10/25

Reporting Bugs @yegor256

Reis Christian

“Though it commonly has a prejorative connotation,

in the Mozilla Project the term bug is used to refer

to any field request for modification in the software,

be it an actual defect, an enhancement, or a change

in functionality. (“bug-driven development”)”

— Christian Robottom Reis and Renata Pontin de Mattos Fortes. An Overview
of the Software Engineering Process and Tools in the Mozilla Project, 2002



11/25

Reporting Bugs @yegor256

Kim Herzig

“In a manual examination of more than 7,000 issue

reports from five open-source projects, we found

33.8% of all bug reports to be misclassified

threatening bug prediction models, confusing bugs

and features: On average, 39% of files marked as

defective actually never had a bug.”

— Kim Herzig, Sascha Just, and Andreas Zeller. It’s Not a Bug, It’s a Feature:
How Misclassification Impacts Bug Prediction. In Proceedings of the 35th
International Conference on Software Engineering, pages 392–401. IEEE, 2013.
doi:10.1109/ICSE.2013.6606585

https://doi.org/10.1109/ICSE.2013.6606585


12/25

Reporting Bugs @yegor256

3. Reward yourself for each reported

bug [Bugayenko, 2018c].



13/25

Reporting Bugs @yegor256

4. Report strictly one problem per ticket



14/25

Reporting Bugs @yegor256

John Anvik

“People play different roles as they interact with

reports in a bug repository. The person who submits

the report is the reporter or the submitter of the

report. The triager is the person who decides if the

report is meaningful and who assigns responsibility

of the report to a developer. The one that resolves

the report is the resolver. A person that contributes

a fix for a bug is called a contributor.”

— John Anvik, Lyndon Hiew, and Gail C. Murphy. Who Should Fix This Bug?
In Proceedings of the 28th International Conference on Software Engineering,
pages 361–370, 2006. doi:10.1145/1134285.1134336

https://doi.org/10.1145/1134285.1134336


15/25

Reporting Bugs @yegor256

5. Exaggerate for effect [Bugayenko,

2018b].



16/25

Reporting Bugs @yegor256

Do This, While Reporting Bugs:

• Stay cool

• Exaggerate
•Victimize yourself

• Push them

• Show efforts

• Look engaged

• Look altruistic

•Aggregate (not!)

More about it by Bugayenko [2018b].



17/25

Reporting Bugs @yegor256

6. Simplify until it’s impossible to

simplify any further [Bugayenko, 2022].



18/25

Reporting Bugs @yegor256

Bugs Occam’s Razor

1 Here is my code:
2

3 a := 7
4 a := a + 5 - 3
5 a := a / 3
6 print a
7

8 It doesn’t work as expected.
9 It prints 4, but it should
10 print 3.

1 Here is my code:
2

3 a := 7
4 a := a - 3
5 print a
6

7 It doesn’t work as expected.
8 It prints 7, but it should
9 print 4.

Most probably, the subtracting operator

doesn’t do anything — this is the bug.



19/25

Reporting Bugs @yegor256

7. Be a prosecutor, not an

advocate [Bugayenko, 2014].



20/25

Reporting Bugs @yegor256

8. Don’t give up until some changes are

made to the code base [Bugayenko,

2014].



21/25

Reporting Bugs @yegor256

9. Prefer a disabled test in lieu of a bug

report [Bugayenko, 2023].



22/25

Reporting Bugs @yegor256

Why not?

1 // @todo #42 This test is disabled
2 // because the fibo() doesn’t work
3 // correctly with this input, returning
4 // 17711 instead of 28657. Fix it.
5 #[test]
6 #[ignore]
7 fn calculates_23rd_fibonacci_number() {
8 let x = fibo(23);
9 assert_eq!(28657, x);
10 }

“Such a PR serves as both a bug report (this is

what the text of the puzzle will be turned into,

once the PR is merged) and a test that

reproduces the problem. It will be more than

welcome by the repository maintenance team.

This kind of PR saves the time they would

spend creating a unit test. Also, it saves your

time for creating a bug report, as it will be

created automatically by the puzzles discovery

tool.” [Bugayenko, 2023]

Repositories With a Lot of Bugs (9 Feb 2024)



23/25

Reporting Bugs @yegor256

Github Repository Issues

mozilla bugzilla 1,8M+
gitlab-org/gitlab 172,462
flutter/flutter 79,386
kubernetes/kubernetes 42,627
tensorflow/tensorflow 36,776
moby/moby 19,367

All repositories are open source.

https://bugzilla.mozilla.org/
https://gitlab.com/gitlab-org/gitlab/-/issues
https://github.com/flutter/flutter
https://github.com/kubernetes/kubernetes
https://github.com/tensorflow/tensorflow
https://github.com/moby/moby


24/25

Reporting Bugs @yegor256

References
John Anvik, Lyndon Hiew, and Gail C. Murphy. Who

Should Fix This Bug? In Proceedings of the 28th
International Conference on Software Engineering,
pages 361–370, 2006.

doi:10.1145/1134285.1134336.

Nicolas Bettenburg, Sascha Just, Adrian Schröter,

Cathrin Weiss, Rahul Premraj, and Thomas

Zimmermann. What Makes a Good Bug Report?

In Proceedings of the 16th International Symposium
on Foundations of Software Engineering, pages
308–318, 2008. doi:10.1145/1453101.1453146.

Yegor Bugayenko. Five Principles of Bug Tracking.

https://www.yegor256.com/141124.html, nov
2014. [Online; accessed 07-02-2024].

Yegor Bugayenko. More Bugs, Please.

https://www.yegor256.com/180206.html, feb
2018a. [Online; accessed 07-02-2024].

Yegor Bugayenko. The Right Way to Report a Bug.

https://www.yegor256.com/180424.html, apr

2018b. [Online; accessed 08-02-2024].

Yegor Bugayenko. Either Bugs or Pull Requests... or

You Are Out.

https://www.yegor256.com/180724.html, jul
2018c. [Online; accessed 07-02-2024].

Yegor Bugayenko. Bugs Occam’s Razor.

https://www.yegor256.com/220329.html, mar

2022. [Online; accessed 07-02-2024].

Yegor Bugayenko. A Disabled Test in Lieu of a Bug

Report.

https://www.yegor256.com/230725.html, jul
2023. [Online; accessed 07-02-2024].

Tommaso Dal Sasso, Andrea Mocci, and Michele

Lanza. What Makes a Satisficing Bug Report? In

Proceedings of the International Conference on
Software Quality, Reliability and Security (QRS),
pages 164–174. IEEE, 2016.

doi:10.1109/QRS.2016.28.

Kim Herzig, Sascha Just, and Andreas Zeller. It’s Not

a Bug, It’s a Feature: How Misclassification

Impacts Bug Prediction. In Proceedings of the 35th

https://doi.org/10.1145/1134285.1134336
https://doi.org/10.1145/1453101.1453146
https://www.yegor256.com/141124.html
https://www.yegor256.com/180206.html
https://www.yegor256.com/180424.html
https://www.yegor256.com/180724.html
https://www.yegor256.com/220329.html
https://www.yegor256.com/230725.html
https://doi.org/10.1109/QRS.2016.28


25/25

Reporting Bugs @yegor256

International Conference on Software Engineering,
pages 392–401. IEEE, 2013.

doi:10.1109/ICSE.2013.6606585.

Bill Hetzel. The Complete Guide to Software Testing. A
Wiley-QED Publication, 1993.

Glenford J. Myers, Tom Badgett, Todd M. Thomas,

and Corey Sandler. The Art of Software Testing.
Wiley Online Library, 2004.

Christian Robottom Reis and Renata Pontin

de Mattos Fortes. An Overview of the Software

Engineering Process and Tools in the Mozilla

Project, 2002.

Joel Spolsky. Painless Bug Tracking.

https://www.joelonsoftware.com/2000/11/
08/painless-bug-tracking/, nov 2000.
[Online; accessed 07-02-2024].

https://doi.org/10.1109/ICSE.2013.6606585
https://www.joelonsoftware.com/2000/11/08/painless-bug-tracking/
https://www.joelonsoftware.com/2000/11/08/painless-bug-tracking/

