
Open Source Best Practices (OSBP)
Series of lectures by Yegor Bugayenko

To be presented to students of Innopolis University in 2024

The entire set of slide decks is in the yegor256/osbp GitHub repository

Abstract:

In the course, students will learn how to interact with other programmers

in open source GitHub repositories, ensuring that pull requests integrate

seamlessly, reputation grows, the popularity of repositories increases, and the

satisfaction of being an open source contributor materializes. This skill may

also help students in their work with proprietary repositories, especially when

teams are remotely distributed.

What is the goal?
This course introduces best practices for GitHub-based software development, which

may eventually help students gain 10,000 stars in their own repositories.

Who is the teacher?
Yegor is developing software for more than 30 years, being a

hands-on programmer (see his GitHub account with 4.5K fol-

lowers: @yegor256) and a manager of other programmers. At

the moment, he is a director of an R&D laboratory in Huawei.

His recent conference talks are in his YouTube channel. He

also published a few books and wrote a blog about software

engineering and object-oriented programming. He previously

taught a few courses in Innopolis University (Kazan, Russia) and HSE University

(Moscow, Russia), for example, SSD16 (2021), EQSP (2022), PPA (2023), COOP (2023),

PMBA (2023), and SQM (2023) (all videos are available).

Why this course?
Writing code is the so-called “hard skill” that most students are very advanced in when

they graduate from their bachelor’s or master’s programs. However, they usually lack

experience in open source development, where teams are distributed, team members

are not closely related to each other, and quality expectations are higher than in

co-located teams working with proprietary codebases. Introducing students to the

so-called “soft skills” may be beneficial to the projects they will join after graduation.

Students will understand the dynamics and mechanics of software engineering much

better and will contribute more fluently and effectively.

What’s the methodology?
There are eight lectures, each a summary of best practices as seen by Kaicode, an open

source festival organized and sponsored by Yegor since 2015. In laboratory classes,

students either write research papers or submit pull requests to GitHub repositories

suggested by the teacher. Groups that write the best papers will be encouraged to

submit them to ICSE, ESEC/FSE, or a similar A* conference (student or NIER tracks);

the teacher will help them prepare the papers accordingly.

https://www.yegor256.com
https://innopolis.university/en/
https://github.com/yegor256/osbp
https://github.com/yegor256
https://www.youtube.com/channel/UCr9qCdqXLm2SU0BIs6d_68Q
https://www.yegor256.com/books.html
https://www.yegor256.com/contents.html
https://innopolis.university/
https://hse.ru
https://github.com/yegor256/ssd16
https://github.com/yegor256/eqsp
https://github.com/yegor256/ppa
https://github.com/yegor256/painofoop
https://github.com/yegor256/pmba
https://github.com/yegor256/sqm
https://www.kaicode.org
http://www.icse-conferences.org/
https://www.esec-fse.org/


Page #2 of 4

Course Structure

Prerequisites to the course (it is expected that a student knows this):

• How to write code

• How to design software

• How to use Git

After the course, students hopefully will understand:

• How to make their bug reports appreciated?

• How to make their pull requests merged?

• How to reject a pull request politely?

• How to become an active contributor of a large repository?

• How to keep up with GitHub etiquette?

• How to invite and motivate contributors?

• How to deal with frustration during code reviews?

• How to avoid stale pull requests (never merged)?

• How to use GitHub Actions effectively?

• How to format the README.md file?

• How to control quality and avoid chaos in a public repository?

• How to use GitHub account in lieu of a C.V.?

• How to get 100 stars?

• How to release in one click?

• How to employ ChatGPT as a coding companion?

• How to get 10K stars?

• How to earn money via open source?



Page #3 of 4

Lectures & Labs

The following 80-minute lectures constitute the course:

1. Debating

2. Reporting Bugs

3. Making Changes

4. Reviewing Changes

5. Setting Guidelines

6. Integrating

7. Releasing

8. Gaining Popularity

At laboratory classes, organized by a Teaching Assistant (TA), students either make

pull requests to GitHub repositories suggested by the teacher, or write sections for

their research papers.

Most probably, one of the following repositories will be suggested by the teacher

for contribution during the course: yegor256/cam (Bash, Python), yegor256/rultor

(Java, XML), yegor256/qulice (Java), cqfn/jpeek (Java, XML), and objectionary/eo (Java,

XSLT).

https://github.com/yegor256/cam
https://github.com/yegor256/rultor
https://github.com/yegor256/qulice
https://github.com/cqfn/jpeek
https://github.com/objectionary/eo


Page #4 of 4

Grading

At the first lecture, students form groups of 2–3 people in each one (no exceptions!).

Each group picks a research topic from the list suggested by the teacher.

Each group writes a research paper in LATEX, according to the guideline. The length

of the pager may not exceed four pages in acmart/sigplan 10pt format (including

references and appendices). The paper must be presented to the teacher incrementally ,
section by section: 1) Method, 2) Related Work, 3) Results, 4) Discussion, 5) Conclusion,

6) Introduction, and 7) Abstract. Once a section is approved by the teacher, the next

section may be presented for review.

After a presentation of a section, the teacher may ask the group to stop working with

the paper. In this case, no sections may be presented for review any more: they all will

be rejected. This decision is subjectively made by the teacher and will not be explained
to the students, however the following may contribute to such a negative decision:

a) ChatGPT, b) plagiarism, c) negligence, and d) laziness.

When the Abstract is accepted by the teacher, a group may ask a student from another

group to review their paper, according to this guideline. The review must be accepted

by the TA.

There is no exam at the end of the course. Instead, each student earns points for the

following results:

Result Points Limit

Attended a lecture +2 8

Attended a lab +2 8

Merged a pull request to a suggested repo +4 48

Reviewed a paper of another group +3 9

“Method” section (guideline) +8

“Related Work” section (guideline) +12

“Results” and “Discussion” sections (guideline) +12

“Conclusion” +6

“Introduction” section +6

“Abstract” and Title +4

Then, 55+ points mean “A,” 47+ mean “B,” and 23+ mean “C.”

An online lecture is counted as “attended” only if a student was personally presented in

Zoom for more than 75% of the lecture’s time. Watching the lecture from the computer

of a friend doesn’t count.

https://www.yegor256.com/2022/08/24/research-paper-template.html
https://ctan.org/pkg/acmart
https://www.yegor256.com/2023/12/17/how-to-review-research-paper.html
https://www.yegor256.com/2023/10/11/method-of-research.html
https://www.yegor256.com/2023/09/29/how-to-write-related-work-section.html
https://www.yegor256.com/2023/12/11/results-and-discussion.html

